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A Note on Oscillating Reactions

THOR A. BAK

Universitetets Fysisk-Kemiske Institut, Copenhagen, Denmark

The equations originally set up by Volterra to describe the inter-
action between two biological species are interpreted as a set of chem-
ical reactions and discussed from a thermodynamic point of view.
The equations are solved by the methods of Kryloff and Bogoliuboff,
and it is shown that the frequency is lower the farther the system is
from the stationary state, decreasing proportional to the square of
the average distance from the stationary state.

1. In recent years the possible existence of oscillating chemical reactions
and their use in explaining certain biological phenomena have attracted consi-
derable attention 5. Burton ! discussed it from a biological point of view
in connection with “overshoot phenomena’, and Christiansen 2 has recently
suggested it as an explanation of “spike potentials”. Moore 2 has studied a
specific model closely related to the one we shall discuss here, where the period-
icity is caused by autocatalytic steps. Hearon 4 has considered the possibility
of oscillations for several simple reaction mechanisms and concludes that,
under certain general conditions, periodicities are not possible for them. Finally
Bierman % has discussed more complicated mechanisms and shown how auto-
catalytic steps or reactions at the wall (where the absorption is assumed to
be governed by a Langmuir isotherm) can lead to oscillatory behaviour. This
paper also contains a discussion of the biological implications of these mechan-
isms. It must be remarked that in no cases have the differential equations
set up by Bierman actually been solved.

By far the simplest example of an oscillating system, however, is that pro-
posed by Volterra 87 as a model of interacting biological species. A similar
model was discussed by Lotka 8 who gave an interpretation in terms of chemical
reactions. Prigogine and Balescu ® have used the Volterra equations, similarly
interpreted, as an example in a discussion of the thermodynamics of irrever-
sible processes.

Although these interpretations in principle are correct, it is exceedingly
doubtful whether the Volterra equations represent a set of chemical reactions
which actually occur in nature. Even as a model for the study of population
dynamics 1° it probably is too simplified. On the other hand it is as realistic
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as any other model proposed so far, and therefore, because of its simplicity,
the one that should be studied first. The interpretation in terms of chemical
reactions is convenient, because it easily leads to an expression for the entropy-
production.

It is the purpose of this note to show how the Volterra equations can be
solved using the methods of Kryloff and Bogoliuboff. We start by giving
the equations and deriving expressions for the relevant thermodynamic
quantities.

2. It was assumed by Volterra that the interaction between two biological
species, 1 and 2, of which 2 feeds on 1, can be described by the equations

A, = w4, — w44,
A.2 = wgd 4, — w4,

n which 4, and A4, are concentrations and w, (i = 1, 2, 3, 4) are constants.
Below we give and interpretation of these equations in four partial reactions.
J; (i=1, 2, 3, 4) are the corresponding flows and X; (i = 1, 2, 3, 4) are the
thermodynamic forces defined so that ¢ = ZX,J, is the entropy production
in units of the gas-constant R per second.

Reaction Flow Force
k
A, —» 24, J,=kd, Xy=In k_ﬁ‘lz
koA,
4, + 4, > 4, J2=k2A1A2 X,=1In -+
-2
ksA,
Al + A2 g 2A2 J3 = k3A1A2 X3 = ln 2
k_sd,
Az"" M J4=]C4A2 X4: In ;k]:ég‘

(M is an inert substance)

The four reactions correspond biologically to growth of species 1, species
2 feeding on 1, species 2 propagating the faster the more food there is, species
2 dying.

If the four reactions are considered as chemical reactions it is evident that
they do not conserve matter, ¢.e., other substances, whose concentrations are
kept constant, must be involved.

We see that with &, = w,, ky + ks = w,, ks = ws, and k, = w, we have
A, =J,—J,—J; and A, =J;—J,. We must now eliminate k_,, k_,,
k_s, k_, from the expressions for the forces. To do so we observe that the origi-
nal equations have a stable stationary point (4%, 4,%) = (w,/ws, w,/w,). It
is known form the investigations of Volterra ® that the representative point
in the 4,, A,plane moves in closed curves counter-clockwise around this
stationary point. This suggests introducing relative forces 4X; = X, — X®
in which X2 is the force at the stationary point.
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We find:

AX, 4+ 4X; + 4X, = 0 = 4X, + 4X,
so that

0—0° = TAXJ; = (J1—Jy—Jy) 4X, + (J3—J,) (4X, + 4X;) = Zju,

with
w, w
2 =4X;=In —2 — ~ — 3¢
Wy -+ Waay Wy
w w
2= AX; + A4X;=1In —1 N——2a2
Wy + W,y wy

In these equations j; is the time derivative of 4; (or ¢;) and o, = 4; — A48,
The approximate values given are valid for ¢; ~ 0. In terms of the ¢’s the
original equations read

. Woly

ay = — Gy — Wyt &

1 wy, % 201@2
. w,w
1¥s

ay = ——= ay + W,

2

and we see that when a,a, can be neglected compared with «, or ay, 7.e., when
we linearize the equations, the representative point describes an ellipse around
the stationary point (0,0) in the &y, a,-plane.

We see that near the stationary point « and « as well as z and § are connec-
ted by matrices with constant coefficients and no diagonal elements. They
are, however, not simply antisymmetric matrices as in the simpler case discus-
sed by Prigogine and Balescu ?. To ensure oscillations the 2 X 2 matrix must
have purely imaginary eigenvalues. The conditions for this is that the deter-
minant is positive and, the trace vanishes. These conditions are satisfied.

The system so far described has no tendency to approach the stationary
state, and this state is therefore, thermodynamically speaking, not a stable
state. If w4, is replaced by a constant as suggested by Lotka & or if terms
containing 4,2 and 4, are included in the equations ¢, the representative
point in the 4,, A,-plane will spiral in towards the stationary state. This is
seen by linearizing the equations. Arbitrarily close to the stationary state
there will, however, exist states with o—o¢® { 0 and therefore the approach
to the statinary state does not minimize o. Nor does it seems possible to
construct a physically meaningful function which is minimized. We have,
therefore, here a thermodynamically stable state which seemingly is not
governed by a minimum principle related to the principle of minimum entropy
production.

Finally we should mention the differential form

2jda; = wyrde; — wya,da,
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which has been shown by Glansdorff and Prigogine 2 to be always negative.
Since the rotation is counter-clockwise this is immediately verified, and the
theorem of Glansdorff and Prigogine can be said to fix the sense of rotation
as pointed out by Prigogine and Balescu ®. This differential form will not
in general possess an integrating multiplier 13 although in this case, with
only two independent variables, it does (s.e., (a,a)7).

3. If one tries to solve the non-linear equations of Volterra by usual
iteration-methods starsing from the solution of the linearized equation one
immediately gets terms which diverge strongly as ¢ - 0. We must therefore
use an iterative procedure where, at each step, the occurrence of such terms
is prevented. Such a method has been devised by Kryloff and Bogoliuboff 11,
and we refer to their book for details.

It is convenient to introduce new variables y, and ¥, by o, = Wl WYy
and a, = wya)/ w,y,. We then have

y.1 = — VYo — AY1Y>
Y= v+ by,
with v = Yww,; a = wawgl/wy; b = wuwg)/ w, or:
.o . ag}?
Yy, = b —avy? 4 —21
Y1+ vy Y1Y1 vy} + y + ay,

and an analogous equation for y,.

In the first approximation the representative point in ¥,y, space now
moves on a circle around (0,0). We see that the right-hand side of the last
equation contains terms which, when expanded in power series near (0,0),
are smaller than the terms on the left-hand side by increasing orders of magni-
tude. Expanding the fraction on the right-hand side we rewrite the equation as:

U + 2y = ey — i + S9H) — 2GRyt e+
= — ¢&f1(¥1, !/.1) — &3y, ?/1) T

where the factor ¢ indicates the smallness of the perturbation. This separa-
tion of the right-hand side into terms of increasing order of smallness appears
to be necessary for the successful application of the Kryloff-Bogoliuboff
method. In the final solution we shall of course put ¢ = 1.

We want to find a solution of the form y, = 2(z), with t = wf 4 ¢, where
2(t) is a function with period 2z. Substitutiong we get

w%" + 2 = — &f (2, w2') — y(2, W2')— ...
and we now assume
z = 2y(7) + £24(7) + (1) + . . .

w=w0, +ew;, + fw, +...
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Using the above assumption and collecting powers of @ we have the recursive
system:

”n
1. wlzy + 1% =0

2. wiz] + %2 = — f1(2y, @e2;) — 2wwy2Z;
8. wiz, + vy = — f{(2, 0e2y) — fa2, We2y) — (W} + 2wwy)2 — 2w4w2,
etc.

These linear differential equations are solved, and at each step in the itera-
tive procedure we adjust w so that secular terms do not develop, ¢.e., we adjust
w so that the Fourier-expansion of the right-hand side does not contain terms
with sin ot or cos wt. We obtain:

1. y, =7 cos(vt + @) »=Vww,
Y, = r sin(t + @)
2. y,=r cos(vt + @) + ;—v r2cos2(vt + @) + %rzsin2(vt + )

b .
Yy =7 8in (vt 4 @) — 3, r2cos2(vt + @) -+ %rzsm2(vt + @)

w, = 0, %. e., the frequency is as in the first approximation

2
3. wy=— ;—2 (a® + b?), 1. e., the frequency is
7‘2 — w2w27¢2
V=13 (@ + b®) = Vww, — —2_153— (wy + wy)

It is hardly worth while to go on to higher approximations for ¥, and y,,
since the most important result certainly is the expression for the frequency.
Experimentally the frequency will be easily accessible even for very fast
reactions, and if the chemical reactions leading to the Volterra equations could
be realized, it would be easy to check this expression, since at least one rate-
constant can be changed at will simply by adding the substance which must
serve as ’food’ for 4, to conserve matter. It is of course intuitively clear
that the frequency will decrease when r increases, since the path length increa-
ses towards infinity and at the same time the path approaches the other
stationary point (which is unstable ). Although the frequency goes down,
the actual velocity of the system in its path in a,, @, space increases — in
the first approximation proportional to .

The method we have applied here can be used on most second order non-
linear differential equations leading to oscillations and should therefore make
it possible to discuss more closely the models for oscillatory behaviour which
are found in the literature.

The author is indebted to professor J. A. Christiansen for having drawn his attention
to this problem as well as for numerous discussions.
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