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A Brownian Motion Theory of Chemical Reactions

THOR A. BAK and IGOR W. PLESNER

Institute for Physical Chemistry, University of Copenhagen, Denmark

A theory for the dissociation of a diatomic molecule in weak inter-
action with a thermostat is proposed. Exact solutions are given_for
a harmonic oscillator.

In the classical collision theory of chemical reactions in gases it was generally
assumed that dissociation of a molecule occurs by direct transitions from low
vibrational states to the dissociated state. In recent years ® it has however
become clear that the energy transfer to the vibrational degrees of freedom
during a molecular collision generally is small compared with the dissociation
energy. Under these circumstances it is necessary to consider the dissociating
molecule as performing a random walk or Brownian motion in energy space”
on its way to the dissociation energy. The small random changes in energy
are caused by the collisions between the reacting molecule and the other mole-
cules which act as a thermostat. Although large amounts of translational
energy may be transferred during such collisions, only a small part of the
collision energy goes into the vibrational degrees of freedom, and we can there-
fore speak of the reacting molecule as being weakly coupled to a thermostat.
For the case of a diatomic molecule imbedded in a crystal lattice it is of course
even more so that the molecular oscillator is only loosely coupled to the crystal
lattice.

The first one to investigate such an approach to chemical kinetics was
Kramers 5 who in 1940 developed a theory of Brownian motion in a field of
force and thus was able to make a diffusion model of chemical reactions as
suggested many years before by Christiansen 4. In this theory one visualizes
the chemical reaction as the escape of a particle from a potential minimum due
to the shuttling action of the thermostat. If @ (E,t) denotes the probability
that the particle has the energy E at time ¢, one finds for the case of weak
interaction between the particle and the thermostat (’small viscosity’ in the
language of Kramers)

0o d d
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where J(E) = [pdg is the action variable, # is the parameter which measures
the interaction with the heat bath. In the special case of a parabolic potential
minimum this equation reads

0D d d
W=’7a7x(‘+a—5)¢ @)

where x = E[kT.
The coupling parameter (friction coefficient) % is defined by the Langevin

equation .
p=—np+ K(g) + A(®) ' (3)

in which p is the linear momentum of the particle, K(g) the force whose poten-
tial is the potential energy along the reaction coordinate, and 4 (¢) the ’random
force” which represents the action of the thermostat. It is usually assumed
that the friction coefficient is constant (that is, independent of p) but Kramers
mentions the possibility that it might be replaced by an arbitrary (even)
function of p, although he does not investigate this case further. As we shall
see below for the case of Brownian motion in crystals the assumption that # is
independent of p is identical with an assumption by Peierls about the inter-
action between normal modes in a crystal, which can be shown to be valid to
the same accuracy as for instance the Debye approximation in the theory of
specific heat. It is therefore not inconceivable that one might find physical
systems which for their proper description would require a theory in which 5
is not assumed to be constant.

A quantum mechanical analogue of Kramers’ theory was given by Montroll
and Shuler 7 for the case of a particle in a parabolic potential minimum, ¢.e.
an harmonic oscillator. Let the classical frequency of the oscillator be w so
that the energy levels are (n + %)iw and let @ denote %w/kT. Montroll and
Shuler then obtain in their random walk model the following equation

%% =x{ne @ x,_1—[n+ n-+1)e Oz, + (n+1)x41} (4)

where z, is the probability that the oscillator is in & state with energy nfw
over the zeropoint energy, and » is a parameter which measures the interaction
with the heat bath. A similar equation has been proposed by Nikitin 8.

It is not immediately obvious that an equation of this type is a quantum
mechanical analogue of the Kramers equation, but assuming @ ({1 so that e—©
can be replaced by 1—@ we can write the equation as

d npl — 2, n—
AEPMIESES KL

x”+1 — X, x_n_ Ly—-1

When we replace n@ by z and «, by @ and furthermore let 2 - 0, we get
X " , 0 d
=Nk + (1 + )P+ B = Wx(l + W)szb

+

where 7 is the limit of @x as 2 - 0.
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In this way we see that the two approaches lead to corresponding equations
and that the equation of Montroll and Shuler therefore is the proper generaliza-
tion of the Kramers equation.

In both theories one uses transition probabilities or random forces, and this
gives rise to the parameter # (= @x) which essentially is a non calculable
quantity. It is true that, as stated by Montroll and Shuler, % is in principle
calculable from the quantum mechanical theory of collisions, but if one tries
to do so eqn. (4) will require additional justification, since there is as yet no
simple way of getting such a ’master equation’ directly from quantum me-
chanics or classical mechanics. Ifone can justify the use of the master equation,
i.e., essentially explain how irreversibility arises in a mechanical system, then
within this framework the calculation of # will be immediate, but within the
conceptually much simpler framework of the Kramers theory or Montroll and
Shuler theory the coupling constant is, to our minds, best considered as an
empirical parameter.

To get a theory for chemical reactions one now assumes that the particle
under consideration performs a Brownian motion in the potential hole as long
as its energy is smaller than E.., and that it is annihilated when its energy
exceeds Fa. This is evidently a crude model of a particle passing a potential
barrier, and since it is possible to solve eqn. (2) exactly for the boundary condi-
tion @(x*,t) = 0 (all t), it is possible in this way to estimate how much the
distribution in energy space @ (x,t) differs from the equilibrium distribution and
how much this influences the rate constant.

BROWNIAN MOTION OF A DIATOMIC MOLECULE
Using the explicit assumption that the oscillating molecule is in weak

interaction with the thermostat we can write the energy of the system consist-
ing of a molecule plus the thermostat as

A= Hrp + Hy + AV
where 4 is & small dimensionless parameter.

The energy of the thermostat can be considered as a sum of energies of a
large number of subsystems without interaction, that is,

HT = Z Hr(k)
&

and we now introduce angle-action variables for the subsystems of the thermo-
stat and for the molecule and make a Fourier expansion of the interaction
potential ¥ on the angle variables. For the special case of a harmonic oscillator
imbedded in a lattice, which we have considered previously 1% we have

N
H = zwaf -+ wd + A Z z {Vvl+ ei(ai+va) -+ Vv/— e i(—a,+va)}
f=1 v f
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Here f is the wavenumber for the normal modes of the lattice, « and J denote
angle-action variables, and Vy* = Vgf+Jy(fr,), where ¢f+ is the amplitude
of the fth normal mode, 7, the amplitude of the molecular oscillator and
Jy(fr,) denotes the Bessel function of order ». V,is assumed to be independent
of the energy of the oscillator. For a derivation of this expression for 7 see
Ref. 1 or Ref. 2

Using this Hamiltonian the Liouville equation is set up and solved by the
perturbation technique used by Brout and Prigogine 3. In the limit 4 - 0,
t > o , A% t finite, N — oo this leads to eqn. (2) after an integration over the
frequency spectrum of the lattice, provided the so-called Peierls assumption ®

[V
2

Wy

= constant

is valid. Since in this derivation of eqn. (2) 5 is proportional to | V,?/w,2 we see
that the assumption that this quantity is independent of f and of the energy
of the oscillator is tantamount to the assumption of Kramers, that % is inde-
pendent of the momentum of the particle. The range of validity of the Peierls
approximation has been investigated by Plesner !° who has shown that in a
one-dimensional lattice with nearest neighbour interaction it has the same
range of validity as the Debye approximation for the frequency spectrum of the
lattice. Since the assumption of a Debye spectrum is necessary anyway in
integrating over the frequency spectrum of the crystal, the Peierls approxima-
tion is a reasonable assumption in this case, but it is quite possible that when
considering a system where the thermostat is not a crystal one can get an
energy dependent friction coefficient.

CHEMICAL REACTION AS ANNIHILATION OF PARTICLES

To use the equation for @ in a model of chemical reactions we must have
an intramolecular potential which allows a dissociation of the molecule, 7. e.,
a potential for which the particle has one or more ’bound states’ and a "’free
state’ into which it goes or through which it passes from one bound state to
another.

So far we have not been able to treat a potential of this type, and we have
therefore used the following model of a chemical reaction. A particle which is
weakly coupled to a thermostat moves in potential ¥ = V(q) as long as its
energy is smaller that E*, but when its energy reaches E*, it ceases to exist.
For the special case of a harmonic oscillator eqn. (2) will then apply for x < a*
= E*[ET, but for x > z* we have @ (z,t) = 0. The solution of this boundary
value problem in the range 0 < r < z*is

D = D cqo M o~* 171 (—a,1,2)
a
where the summation over a goes over the roots of

1y (—e,lx*) =0
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10.00000(—1)
76.97406( —2)
60.82404(—2)
48.96119(—2)
39.96001(—2)
32.94893(—2)
27.38760(—2)
22.90635( —2)
19.25139(—2)
16.24117(—2)
13.74233(—2)
11.65566(—2)
99.02155(—3)
84.23423(—3)
71.72192(—3)
61.10610(—3)
52.08030(—3)
44.39394(—3)
37.84039(—3)
32.24797(—3)
27.47317(—3)
18.36738(—3)
12.23186(—3)
81.09532(—4)
53.560914(—4)
35.13758(—4)
22.96773(—4)
14.94463(—4)
96.84116(—5)
62.51391(—5)
40.21350(—5)
16.48616(—5)
66.87333(—6)
26.88773(—6)
10.73105(—6)
42.56524(—17)

16.0 16.79150(—17)
17.0 65.93358(—8)
18.0 25.78560(—8)
19.0 10.04701(—8)

o)

»*
of a.

20.0 39.02197(—9)
0
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Qas
71.95819(—1)
59.41822(—1)
50.50660(— 1(
43.86213(—1)
38.72785(—1)
34.65393(—1)
31.34842(—1)
28.62121(—1)
26.33808(—1)
24.40428(—1)
22.74995(—1)
21.32238(—1)
20.08193(—1)
18.99773(—1)
18.04421(—1)
17.20256(—1)
16.45650(—1)
15.79309(—1)
15.20119(—1)
14.67208(—1)
14.19805(—1)
13.21352(—1)
12.45678(—1)
11.87272(—1)
11.42145(—1)
11.07323(—1)
10.80539(—1)
10.60035(—1)
10.44433(—1)
10.32642(—1)
10.23798(—1)
10.12366(—1)
10.06240(—1)
10.03085(—1)
10.01469(—1)
10.00689(—1)
10.00318(—1)
10.00144(—1)
10.00064(—1)
10.00028(—1)
10.00012(—1)

1

Table 1.

as

18.30293

15.19890

12.98659

11.33113

10.04731

90.23554(—1)
81.88976(—1)
74.96262(—1)
69.12601(—1)
64.14741(—1)
59.85461(—1)
56.12010(—1)
52.84408(—1)
49.95132(—1)
47.38103(—1)
45.08492(—1)
43.02396(—1)
41.16610(—1)
39.48498(—1)
37.95862(—1)
36.56844(—1)
33.59200(—1)
31.18660(—1)
29.22134(—1)
27.60263(—1)
26.26165(—1)
25.14657(—1)
24.21748(—1)
23.44301(—1)
22.79807(—1)
22.26220(—1)
21.45267(—1)
20.90830(—1)
20.55158(—1)
20.32486(—1)
20.18554(—1)
20.10282(—1)
20.05540(—1)
20.02906(—1)
20.01489(—1)
20.00747(—1)

2

Qay

28.56591
24.44412
21.35661
18.95957
17.04459
15.48130
14.18098
13.08343
12.14507
11.33406
10.62652
10.00419
94.52907(—1)
89.61433(—1)
85.20806(—1)
81.23801(—1)
77.64445(—1)
74.37784(—1)
71.39850(— 1)
68.67103(—1)
62.77588(—1)
57.93720(—1)
53.91185(—1)
50.52646(—1)
47.65390(—1)
45.19884(—1)
43.08846(—1)
41.26605(—1)
39.68689(—1)
38.31511(—1)
36.08260(—1)
34.39164(—1)
33.11758(—1)
32.16846(—1)
31.47334(—1)
30.97535(—1)
30.62793(—1)
30.39256(—1)
30.23861(—1)
30.14040(—1)
3

30.61161
27.53224
25.01535
22.92064
21.15093
19.63642
18.32608
17.18163
16.17379
15.27981
14.48182
13.76510
13.11836
12.53196
11.99804
11.51003
11.06244
10.09137
92.89385(—1)
86.17492(—1)
80.47932(—1)
75.60263(—1)
71.39215(—1)
67.73090(—1)
64.52799(—1)
61.71168(—1)
59.22463(—1)
55.06124(—1)
51.75745(—1)
49.11934(—1)
47.00818(—1)
45.32169(—1)
43.98210(—1)
42.92842(—1)
42.11074(—1)
41.48774(—1)
41.02246(—1)
4

oy (k =1, 2,3, 4, 5) are the zeros of the function ,F, (—a, 1, 2*) considered as a function

The numbers in brackets are the powers of ten by which the values given for a; should be
multiplied.

considered as an equation in . The first five roots of this equation are tabulat-
ed in Table 1 for different values of z*.
It is seen that when z*~10, a, (and a fortiori az, a,, ...) will be more than
a thousand times larger than «,, so that to an excellent approximation we can

set

where «, is the smallest root in the equation \F; (—a,,1,2*) = 0.

P = ce~ W% o=* 1 Fy (—ay,1,2)
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Table 2. The table shows the ratio between the true’ rate constant k = na, (x*)
and the equilibrium rate constant keq = nz* e—** as function of z*.

k|keq 1.21730 0.83407 0.82245 0.85582 0.88576
x* 2 4 6 8 10

klkeq 0.90670 0.92180 0.93257 0.94060 0.94661
x * 12 14 16 18 20

From this we get immediately that the rate constant for escape from the
potential minimum is ;7 and furthermore we see that while the reaction is
going on the change in @ is so that the relative change in @ isindependent of z.
In other words, the distribution function in energy space has a quasi-stationary
character.

It is easily verified that as ¥ — o0, a; becomes asymptotically equal to
z* e—**, Since in this limit @ approaches the equilibrium distribution e~*, we
shall denote keq = 7 x* e~** the equilibrium rate constant. It is well to bear
in mind, though, that in deriving this expression we have nowhere used the
assumption about equilibrium as is done, for instance, in the transition state
method. Table 2 shows how the exact value of «;(z*) compares with the
“equilibrium value” of a;, and it is seen that for * > 10 the error is less than
12 9%, It is true, therefore, that for reasonable values of the activation energy
the equilibrium hypothesis is a good approximation, but only when the equi-
librium result is taken to be the limit of the non-equilibrium result, as the
barrier height is increased to infinity. To introduce the equilibrium assumption
at an earlier stage would not only lead to a quite different result, but it would
also lead to a non-consistent theory.

CONCLUSION

Above we have compared the different Brownian motion approaches to
chemical kinetics and shown how they lead to the same result in the case of a
dissociating harmonic oscillator. In comparison with earlier derivations of the
equation for this case our method which is based on the method of Brout and
Prigogine may seem unduly complicated. This is due to the fact that we have
not made any assumptions about ’random interactions’, but only used that
the thermostat is large (infinitely many degrees of freedom) and that the inter-
action is weak (A = 0). Therefore, to our mind, our derivation of the Kramers
equation in the weak interaction limit does present some advantage over
previous derivations.
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