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High-speed Computers as a Supplement to Graphical Methods

II. Some Computer Programs for Studies of Complex

Formation Equilibria

NILS INGRI and LARS GUNNAR SILLEN

Department of Inorganic Chemistry, Royal Institute of Technology, Stockholm 70, Swed

A series of programs for high-speed electronic computers have
proved useful in investigations on equilibria with polynuclear com-
plexes. The programs are so constructed, that, when a new system is
to be studied, only a small part (the ’SP’’) needs to be rewritten (and
this is easily done) whereas the main part (the ”HP’’) can be used
without change. It could also be used for problems from other fields,
chemical or not.

The programs KUSKA, PROKAUS, PROKAIS, HALTA and
LETAGROP are given in full — written in Ferranti Mercury Auto-
code — their principles are discussed, and some initial difficulties
of a general interest are pointed out. These programs solve the prob-
lems indicated in (6), in the text.

LETAGROP may be called a generalized least-squares method for
finding a set of unknown constants from experimental data, even
with a non-linear and implicit functional relationship. The principles
of LETAGROP were indicated in part 13,

The studies of complicated solution equilibria in this laboratory have re-
quired a fair amount of computational work. At first, the primary measure-
ments (emf’s, analyses, volumes) are reduced to the type of data, say (Z, a,
B), (b, a, B), most suited for mathematical treatment. From these data, and
with no previous assumption as to which out of all conceivable complexes
A, B, are important, it is usually possible by a mainly graphical treatment
to deduce the formulas and approximate formation constants of the main
products, or at least to exclude all but a few possibilities. This part of the work
is relatively simple.

The hard work, however, comes in with the refinement of the equilibrium
constants, and the attempts to deduce formulas and stability constants for
species present in smaller amounts. For the construction of the graphs it is
often necessary to solve a large number of equations of, say, 6th, 7th or 12th
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174 INGRI AND SILLEN

degree; if only desk computers are available, the best but still very time-
consuming way is to use auxiliary graphs.

Since electronic high-speed computers were used to a large extent in the
crystallographic work in this laboratory, it was natural to apply such compu-
ters to the computations of solution chemistry. Indeed, during the last year
or so a Ferranti-Mercury computer has been used by workers of this laboratory
to calculate projection maps! and species distribution diagrams for poly-
nuclear systems, thus saving, for each system studied, weeks of drudgery and
making it possible to increase the accuracy of the result.

The time-determining factor, which had earlier been the calculation of
the points on the projection maps, now became the plotting of the points
from the tables calculated by the computer. Especially for systems with many
species, the refinement of the equilibrium constants required a large number
of maps, which sometimes became a little difficult to survey. Since the standard
“least squares’ treatment (see, e.g., Rydberg 2) cannot be applied in our sys-
tems with polynuclear species, the program LETAGROP ? was worked out
in early 1961, which made possible a simultaneous refinement of many
constants.

Notes on the teaching of computer programming

In the meantime, many more of the chemists in this laboratory learned
how to program a computer by means of seminars and lectures in the depart-
ment of inorganic chemistry, by learning from others, and by reading for
themselves. The Ferranti-Mercury computer, which was used for most of our
calculations of solution equilibria, has a very good and easily understandable
automatic code 4, the “autocode”. It seems possible in 4 hours lectures 4 4
hours problem class to teach students how to write simple programs in the
autocode, if one applies the same principles as when teaching a new language.
One should rather begin by giving simple sentences and making it clear what
they mean than by first studying the muscles of the tongue and larynx, or
memorizing the grammar, or memorizing a dictionary.

One must only first realize that the computer contains a number of boxes
(registers), each of which has a label like A, B, C,, efc., and contains a number
which is zero until changed by order. Some boxes, the "indexes” I, J...S, T'
can only contain integers between —512 and 511 whereas the others can
contain numbers between = 107 and 107°.

Practically the only other thing the chemist needs to know about the in-
side of the machine is that there is a little demon in it, the ’computer”’, who
can do simple arithmetical calculations very rapidly and who can place a new
number in a given box, read the content of any box, and send letters and
numbers to be printed, if he is told to do so in correct computer language.

At first we did not intend to publish our programs in detail since we thought
that anybody who can write down a set of mathematical equations can also
make a computer program for them. We have, however, come to think that it
might be useful to publish some programs in full, and tell about our experiences
since this might save time for other chemists, and help them to overcome initial
hesitations and start programming for themselves.
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COMPUTERS AND GRAPHICAL METHODS 1I 175

The programs will be written in the Ferranti Mercury autocode but should
not be hard to translate to other computer codes.

Main parts of the program

The program that we give the computer to read, as a punched tape, in
general consists of three parts, which are usually separate tapes, the first two
ending with the instruction ”—"’; which means: “’stop and hoot, and you will
get more tape to read”.

1. HP (huvudprogram) the main program.
2. SP (sdrprogram) the special program.
3. The data.

The HP has a name, usually derived from Swedish terms: XKuska, Proka,
Halta, Letagrop. Each HP has been so devised that it can be applied to a
general class of problems whereas everything that is special in a problem is
stated in the SP. Thus, when one passes to a new chemical system, or a new
hypothesis, only the SP need be rewritten, which is very easy, and there is no
need to think through the functioning of the HP.

The data are the equilibrium constants, concentrations, etc., needed in the
calculations on a special problem.

Equations for polynuclear complexes

The programs Kuska, Proka and Halta were primarily designed for cal-
culations on equilibria with polynuclear complexes; with a proper SP, how-
ever, they can also be applied to very different problems.

If two reagents, A and B, form a series of complexes A,B,, the law of
mass action gives for each of these complexes

Cpg = [ApBg] = Bpa?b? (1)
where a and b are the concentrations of free A and B. The mass balance gives 3

for the total (analytical) concentrations 4 and B, and the average number
of A bound per B, Z:

B=>b+4 Xqcy, A —a=BZ = X pcy (2)

In dealing with hydrolysis reactions, one often counts (—H*) as the ligand ¢;
then, a is replaced by A7 in (1) whereas in (2)

BZ =h — H = X pcp, (2a)
In eqns. (2) and (2a), the sums are taken over all sets (p, q).

In translation to computer language, it would be helpful to use symbols
that are as similar as possible to those used by equilibrium chemists. However,
a few changes must be made since the computer does not distinguish between
small and big letters (upper and lower case letters), nor can it use double
indices:

Chemical A(—H) B Z BZ a(hl) b cy By 10g Bpg

Computer 4 B Z C U Ve b ¢

12 1
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176 INGRI AND SILLEN

The "’chemical’”’ symbols in parentheses are for the special ligand (—H*).
Although the usual typescript of the program uses only upper case letters,
and sets the index on the main line, we have chosen for readability sometimes
to use lower case letters and subscripts, even when we render computer
language.

There are no special symbols for p and ¢; their numerical values for each
complex follow from the SP.

With the symbols of the computer (but not yet correct computer language)
eqns. (1) and (2) would read:

b, = 10% = exp(e; In 10); ¢, = b,UPV? (3)

B=V 4 Xqc,; BZ =C = X pc, (4)

In addition we have

A—U=BZ (5)
or for the special ligand (—H)

A+ 1/U=BZ (5a)

The problems solved by the various programs are as follows:

Known Searched for Program Table

B, U V, ete. Kuska ]

zZ, vV B, U, etc. Prokais 2 (6)

zZ,U B, V, etc. Prokaus 3

A, B U, 7V, etc. Halta 4

The “known’ quantities may be read one by one from the data tape on
instructions like: “read B;”. Preferably they are calculated as members of
an arithmetical series with first term (say, a,) and increment (say, a,) given;
then one uses a cycle instruction of the type: "K = O(1)R ; Z = a, + Ka,
..... repeat;”’. In Tables 1—4 the programs are written for the most common
way of giving the “known” quantities in each case. This part is easily
rewritten if it should be necessary.

The SP contains the relationships B(U, V) for Kuska, and in addition
C(U, V) for Prokais and Prokaus, and A(U, V) for Halta. There is nothing
in the main program that restricts the functions B(U, V), etc., to be of the
forms given by (3) and (4) above. In fact, the same HP could equally well be
adapted to an SP with any other functions of the two variables U and V.

The example below with Prokais and Prokaus will illustrate difficulties
that may occur with functions that do not increase regularly with both U
and V, and how these difficulties can be remedied.

In Tables 1—5, ;" stands for “carriage return, line feed”, the con-
ventional division between two instructions.

Some practical details — such as the controlling indices used in various
places — will not be discussed in the following but will be easily recogni-
zed by the reader who follows the program in detail.
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COMPUTERS AND GRAPHICAL METHODS II 177

) Table 1. KUSKA.
HP
Title ; KUSKA ; chapter 0 ; a6 ; 610 ;¢—10;d—3 ; e—>10 ; y->4 ; newline ;
H =Yl]og(10) ; jump 1 ;
2) read(NN) ; print(NV)2,0 ; read(a,) ; print(e,)2,2 ; read(a,) ;
pr1nt(a,)2 2 ; read(R) ; print(R)3,0 ; read(E) ; print(#)1,5 ; newline;
1(1)V ; read(e) prmt(q)l 3;0 —Y’exp(He) Tepeat ; newline ; ;
7) read(B) print B)l 5; yleB newline ; M=0
K=01R; W= al—l—Ka2 ; U= Y’exp(HW) pr1nt(W)2 2;D=1;V=D;G@=2;jump 3;
4) y,=Pmod(B,—B) ; jump 5, y1>yz,1ump 8, B>B,;
G=05;D=GD; V= VDJump
8) D=GD; V=V 4D ;jump 3;
6) repeat ;newline ; jump T;=>;

SP

1) print(1.1)1,1 ; print(1.3)1,1 ; print(2.4)1,1 ; newline ; jump 2 ;

3) ¢;=b0,UV ;¢c,=b0,UVVV ;ca=bUUVVVV;Co=c,-+cy-+2c5;
By=V+c,+3c,+4cs; jump 4 ;

5) print(C,/B)1,3 ; M =M +1 ; jump 6, 2> M ; newline ; M =0 ; jump 6 ;

Yeoxp ; Wlog ; close ;

Data
3 —8.0 0.1 +40 0.0001 ; 5.27 7.31 13.50
N a, ay R E e eg N
0.6 0.4 0.2 0.1 0.05 0.02
B B B B B B

KUSKA

Table 1 gives the HP, and an example of an SP for Kuska. Name from
kurvskara — family of curves. The specific example is from studies of the
reactions of B = B(OH); with A = OH in 3M NaBr. In the SP given, the three
complexes AB, AB,, A,B, (B(OH);, B,0,(0H);, B,O;(0H)7) were consi-
dered. The expressions for the equilibrium concentrations of the various
complexes are readily recognized after label 3) in the SP, and also the expres-
sions for BZ(C,) and B(B,), The log B, are given as e, through e,. The problem
is to calculate, for a given B, Z as a function oflog U = log [OH-]. Bis given
a series of values, which are taken from the experiments. For each B, one sets
log U = a, + Ka,, where K goes from 0 to E.

N is the number of complexes, E is the desired accuracy, B, and C, are
the values for B and C calculated with a tentative value for V.

Already during the input of the HP and SP, the computer gives printing
order for the title KUSKA, assigns boxes for ag—>aq, by—>b,, efc., and stores
the remainder of the program in its quick memory. At close’ it stops, and
when restarted begins to read instructions at ’chapter 0”’. Then it calculates
In 10 for future use, has the values p.g for the various complexes printed as
decimal fractions (label 1 in SP), reads and prints a number of quantities from
the data strip (label 2 in HP), and calculates the b, from the logarithms e;.

The main principle of the program is given in Fig. 1a, and still more abbre-
viated in Fig. 1b. After B has been read from the tape, the required accuracy
Yy, = BB is calculated, the first value of U is set, and ¥ guessed. Then the
machine begins to adjust V by means of the two loops’’:
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b
¥
a
take e; Ycalc B,
ca’? b." stop s TV
no 5
[ take B . Y% [more Bvalues?] no
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Fig. 1. a) Schematic flow-sheet for central part of program “KUSKA® (Table 1).
b) Same, abbreviated.
¢) Adjustment of V for constant U in KUSKA. On the curves V(U) shown,
By(U,V) = Band = B + EB.

3) ¢;=b,UV ; ca=bUVVV ;c3=bUUVVVV ;Co=c,+cy+2¢q;
By=V+c;+3c,+4c5 ; jump 4 ;

4) y,=¥mod(B,—B) ; jump 5, y,>y, ; jump 8, B> B, ;
G=0.5;D=@GD ; V=V—D ;jump 3;

8) D=GD ; V=V+D ; jump 3;

In this part of the program V is systematically varied (adjusted) until
Ya=|By — B| <EB =y, ; after that, printing order is given (”’jump 5).

D, the correction to V, is doubled (note that at first G=2) until V has
become too large. After that, D is halved (@=0.5) at each turn and is added
or subtracted from V depending on whether B, is less or larger than B.

To illustrate, if the correct value for V were 59.8, a series of estimated
values for V and the following corrections 4 D might be as follows:

1(++2) 3(4-4) 7(+8) 15(+16) 31(-+32) 63(—16) 47(+8) 55(+4) 59(+2)
61(—1) 60(—0.5) 59.5(+0.25) 59.75(+0.125) etc.

When the desired adjustment has been obtained, the values for U, V,
all ¢, B and BZ are known so that whatever quantities are needed may be
printed. In the special case, only Z was asked for; by using the index M,
a more economic use of the paper is achieved. (Six values are printed on the
same line).
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Table 2. PROKAIS.

HP

Title ; PROKAIS ; Chapter 0 ; 6-6 ; 10 ;¢—»10;d—>3;e-10; y—4;
newline ; H =%1og(10) ; a;, =¥exp(145) ; g, =Pexp(—145) ; jump 1 ;

2) read(N) ; print(NV)2,0 ; read(a,) ; print(a,)1,3 ; read(a,) ; print(a,)1,3 ; read(R) ;
print(R)3,0 ; read(a,) ; print(a,s)1,2 ; read(a,) ; print(a,)1,2 ; read(S) ; print(S)3,0 ;
read(E) ; print(£)1,6 ; newline ;

7) 1=1(1)N ; read(e;) ; print(e;)1,3 ; b; =¥exp(He;) ; repeat ; newline ;

K=0(1)R ; Z=a,+Ka, ; print(Z)1,3 ; newline ;

M=0;

L=0(1)S; V=¥exp(LHa,—Ha,) ; D=1; U=D ; G=2; jurp 3 ;

4) jump 6, By>a; ; jump 6, ag> B ; 41 =BoZ—C4; ya=¥mod(y,) ; ys=EB,;
jump 5, y3>y, ; jump 8,y,>0;

G=05;D=GD; U=U—D ;jump 3;

8) D=GD; U=U+D ;jump 3;

6) repeat ;

newline ; repeat ;

newline ; jump 7; = ;

SP

1) print (1.1)1,1 ; print(1.3)1,1 ; print(2.4)1,1 ; newline ; jump 2 ;

3) ¢;=b,UV ; co=bUVVV ;¢3=bUUVVVV;Cyp=c,4cy+2¢cs5;
Bo=V +cy,+3c,+4cs ; jump 4 ;

5) W =¥l1og(U) ; print(W/H)3,3 ; W =¥log(B,) ; print (W/H)1,3; M=M+1;
jump 6, 3> M ; newline ; M =0 ; jump 6 ;
Yoxp ; Plog ; close ;

Data
3 0.1 0.1 6 2 0.2 16 0.0001 ; O 0 0.9 ;
N a, a, R as a; S E e, €y ey
0 0 0.6 ;0 0 03 ;0 0 0 ; 0 0 —03 0 0 —1;
€, € €3 ey € s e, € €3 e, €, e; e, 6 e
0 0 —1.6;

After printing, another value of U, and eventually another value of B,
is taken.

The procedure is illustrated in Fig. le, which gives curves V(U)s, thus
curves with B, constant in the coordinate plane (U, V). The adjustment is
satisfactory and the calculation ended when B, comes within the limits B+ EB.

PROKA

In the names Prokais and Prokaus, ’Proka’ comes from the Swedish
projektionskarta = projection map and ’S” from sikring (safety catch).

Tables 2 and 3 give the HP for Prokais and Prokaus. Table 2 also gives
an example of an SP (which is the same for Prokais and Prokaus) and of a
data strip.

The SP shown refers to the same system, OH - B(OH),, and the same com-
plexes as in Kuska (3and1).

The Proka programs can be used for calculating a series of projection
maps ! log B(log U), for comparison with the experimental data, and estima-
tion of equilibrium constants. Since a normalized projection map is required,
two of the equilibrium constants can arbitrarily be set equal to 1 (thus the
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Table 3. PROKAUS.

HP

Title ; PROKAUS ; Chapter 0 ;a6 ; b-»10;¢c+10;d—>3;¢->10;y—>4;
newline ; H =¥l10g(10) ; a; =¥exp(145) ; gy =Wexp(—145) ; jump 1 ;

2) read(N) ; print(N)2,0 ; read(a,) ; print(a,)1,3 ; read(a,) ;print(a,)1,3 ; read(R) ;
print (R)3,0 ; read(a;) ; print(a,)1,2 ; read(a,) ; print(a,)1,2 ; read(S) ;
print(S)3,0 ; read(X) ; print(X£)1,5 ; newline ;

7) ©=1(1)N ; read(e;) ; print(e;)1,3 ; b; =Pexp(He;) ; repeat ; newline ;

§=0(1)R ; Z=a,+Ka, ; print(Z)1,3 ; newline ;
=0;

L=0(1)S; U=¥Yexp(LHa,—Has); D=1; V=D ; @=2;jump 3 ;

4) jump 6, By>a; ; jump 6, a;> B, ;

Y1=BeZ—C4; y, =¥Ymod(y,) ; ys=EB, ; jump 5, y;>y, ; jump 8, 0> y, ;

G=0.6;D=GD; V=V—D;jump 3;

8) D=GD; V=V +D ;jump 3;

6) repeat ;

newline ; repeat ;

newline ; jump 7 ; - ;

SP

1) print(1.1)1,1 ; print(1.3)1,1 ; print(2.4)1,1 ; newline : jump 2 ;

3) ¢;=b,UV ;¢ca=bUVVV ;¢;=bUUVVVV;Co=c,+cCy+2c;;
By=V+4c¢,+3c;+4c,y; jump 4 ;

5) W=¥log(U) ; print(W/H)3,3 ; W =Ylog(B,) ; print (W/H)1,3; M =M +1;
jump 6, 3> M ; newline ; M =0 ; jump 6 ;
Yexp ; Wlog ; close ;

Data
3 0.55 0.05 9 0.00 0.20 15 0.0001 ; O 0 0.9 ;
N a, a, R ay a, S E e, e ey
(1] 0 0.6 ;0 0 0350 00 ;0 0 —03;0 0 —1;
e; € €3 e ey ¢ € ey 2, € ey €3 € e ey
0 0 —1.6 ;

corresponding e,= log B,, = 0). To Z a series of values Z = a, + Ka, are
given, where K goes from 0 to R. For each value of Z, log V (in Prokais) or
log U (in Prokaus) passes through a series of values (La,—a;) where L goes
from 0 to 8.

The general principle of Prokais is shown in Fig. 2a, (flowsheet) and Fig.
2b. For each set (Z, V), U is adjusted until the ratio Cy/B, is close enough
to the Z desired. If Cy/B,<Z, then U is increased, otherwise decreased. This
procedure converges as rapidly as Kuska in case Z(U)y increases over the
whole range, as shown in Fig. 2b.

In some systems, however, V(U); has a maximum (Fig. 2c¢). This
behavior was first met with in the borate system, for Z > 0.5, If V is chosen
larger than the maximum value, Cy/B, is always < Z, and the computer
goes on increasing U until some number (one of the ¢;, B, or C) becomes larger
than the largest allowable number in the computer (2%% = 1077) and the ma-
chine stops.

In order to avoid machine stops for this reason, there is a safety exit after
label 4: if B, would become larger than a; = €45 = 10%3 or smaller than a¢; =
6714 the machine stops trying to solve the equations and jumps to the next
set (V, Z).
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Jcalc B,,C,

es

Fig. 2. a) Schematic flow-sheet for central part of "PROKAIS” (Table 2).
b) Adjustment of U for constant ¥ with PROKAIS, to approach desired value
Z for C,/B, (thick curve).
¢) Behavior of PROKAIS for curve with a maximum.

Even for values smaller than the maximum V, at a given Z Prokais can
only find U values that correspond to the left branch of the curve, in Fig. 2c.
If one happens to pass beyond the right-hand branch, U will increase till the
safety catch is triggered.

a b c

e | e

|

es
calc, print

Fig. 3. a) Schematic flow-sheet for central part of "PROKAUS” (Table 3.).
b) Behavior of PROKAUS for curve shown in Fig. 2 b (no adjustment possible).
¢) Adjustment of V for constant U with PROKATUS for curve shown in Fig. 2 c.
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For systems of this type, the program Prokaus (Table 3, Figs. 3a—c)
has been devised: for various sets (Z, U) it adjusts ¥V, increasing V if Cy/B,
is too high and decreasing V if Cy/B,is too low. This program will give the
whole of a curve like that in Fig. 3¢, but no part of a curve like that in Fig.
3b. For a system where part of the ranges behaves like Figs. 2¢— 3¢, one should
apply both Prokais and Prokaus, and so obtains supplementary parts of the
projection map, overlapping to some extent.

Hp Table 4. HALTA.

Title ; HALTAPIFF ; Chapter 0 ; a—»6 ; b+10;¢c—+10;d->3 ;¢e»10;f>3 ;g4 ; u—4;
v->4 ; w4 ; y->4 ; newline ; H =%1og(10) ; jump 1 ;

2) read(N) ; print(N)2,0 ; read(E) ; print(£)1,8 ; read(G,) ; print(G,)3,0 ; read(T) ;
print(7')2,0 ; newline ;

1=1(1)N ; read(e;) ; print(e;)1,3 ; b; =¥exp(He;) ; repeat newline ;

7) read(B) pnnt(B)l 5; newlme yo=EB ;y y,,G

read(a,) ; prmt,(al)l 5 read(a,) prmt(a,)l 5 read(R) print(£)2,0 ; newline ;

U=0. lB V=0.1

K=0(1)R ;A =a1+a,K ; print(4)1,6 ; @ =0;

1M)P=0;U,=U;Dy=2;Dy=V;G@=2;J=0; jump 3 ;

4) y,=B—B,; y:=¥mod(y,) ; ys=4—A,; y, = Pmod(ys) ;
J=J+1; jump 17, J> 100 ; jump 10, 1> D, ; jump 9, yo> ¥s;

15) jump 8,%,>0;G=0.5; Dy=GD,; V=V —D,; jump 3 ;

8) Dy=GD,;; V=V +D,; jump 3 ;

9) ]ump 5,y>y; P=P+1; Vp= V Q=Q+1;Dy=0;D,=U;G=2;J=0;

10) jump 11, yo> ¥, ; jump 12, 44> 0 ;

G=0.5;D,=GD,; U=U—D1,3ump3

12) D, —G‘D1 ; U=U+D,;jump 3 ;

11) jump 5, y>y,; P=P+1; Up=U;Q=Q+1;

jump 5, @> T ; jump 13, P> 3 ;

Dy=2;Dy=V ;G=2;J=0;jump 15;

13) Fo=2U,—U,—U; Us=U—U;; Va=V35—V,; Wa=U,s/Fo; U=U,+U;W,;
V=V+VW;s;Q@=Q+1;

jump 16, 0> U ; jump 16, 0> V ; jump 14 ;

16) print(16)2,0 ;newline ; U=U,; V=V, ; jump 14;

17) print(17)2,0 ; newline ; jump 11, 1> Dy ; jump 9 ;

6) repeat ;

newline ; jump 7 ;- ;

SP

1) Title ; URAN 14 APRIL 1961 ; print(2.2)1,1 ; print(4.3)1,1 ;
print(5.3)1,1 ; print(6.4)1,1 ; newline ; jump 2

3) W=UUV ;¢,=b,VW ;ca=bsc, W ;c4=bsc,UW ; c,=b,c,c,UU ;
Ag=—1/U +2¢c,+4cy-+5cy+6¢c, ; Bo=V +2¢, + 3¢y +4c, ; jump 4

5) W=A,+1/U ; Z=W|B, ; print(10002)3,3 ; W =¥log(U) ;
print(W/H)1,5 ; W =2000c,/B, ; print(W)3,3 ; W =4000c,/B, ;
print(W)3,3 ; W =5000c;/B, ; print(W)3,3 ; W =6000c,/B, ;
print(W)3,3 ; print (Q) 3,0 ; newline ; jump 6
Yexp ; ¥log ; close ;

Data
4 0.000001 100 33 —6.03 -—7.17 -—-10.52 —7.36 ; 0.100 0.050
N E G, T €y N €y €, B a,

-—0.004 30 ; 0.0756 0.040 —0.003 30 ; 0.050 0.030 —0.002 30 ; 0.025
ay R B a, a, R B a, a, R B

Acta Chem. Scand. 16 (1962) No. 1



COMPUTERS AND GRAPHICAL METHODS II 183

HALTA

Table 4 gives the HP for a member (Haltapiff) of the program family
Halta, (halt-tabeller = concentration tables) which is intended to calculate
U and V, and thus all concentrations c;, in cases where only 4 and B are

known. The SP and the data are for the hydrolysis of B = UO3" ; A = —H*.
(Calorimetric titrations of Dr. Kurt Schlyter).

This program has, among other applications proved useful for calcula-
tions of the concentrations of various species in calorimetric titrations with
polynuclear equilibria.

The SP and the data refer to the hydrolysis of B = U002+, A = —H*.
It is assumed that (in the range studied) only the complexes A,B,, A,Bj,
A;B;, and AB, need to be considered; (compare list at SP label 1). In the
present case, the variable W = U2V has been introduced for simplicity. The
equilibrium concentrations c,...c, of the four complexes are easily recognized
at label 3 of the SP.

When U and V, and thus the c; are known, the printing order (SP, label 5)
in this case starts with 1 000 Z, with three decimals. The following numbers
are: log U(= —log [H*]), and 2¢,/B, 4c,/B, efc. = the number of A per B
bound in the form of A,B,, A,B;, efc.

B has a series of values, which are here given by the experiments. For
each B, one uses a series of values, 4 = a, + Ka,, where K goes from 0 to
R. The first, and more subordinate, part of the HP can be rewritten to meet
special needs, for instance, so that A and B are varied simultaneously, as hap-
pens in some titrations.

The flow-sheet of the first edition of Halta is given in Fig. 4a. The pro-
cedure is depicted in Fig. 4b, which gives, in the (U, V) plane, the two curves
on which the functions A, and B, have the desired values, 4, = 4 and B,

yes

o l10)AmA?

adjust U] Jcalc 4, |

yes

Fig. 4. a) Schematic flow-sheet of original "HALTA” (complete program not given here)
b) Performance of original HALTA in approaching the desired point (inter-
section point between Byo(U, V) = Band 4,(U, V) = A).

U
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new U,
U U

Fig. 5. a) “Shot” for a new point in "HALTAPIFF” (Table 4).
b) ”Miss” because of bad aim. The shaded area is the ’bull’s eye”, where both
equations B, = Band A, = A are fulfilled within the desired accuracy.

= B. First, U is kept constant and V adjusted to make B, = B, then V is
kept constant and U adjusted to make 4, = A4, etc. In this way, one app-
roaches the intersection point of the two curves. The convergence was
sometimes rather rapid (a matter of a few seconds, thus something like 3—5
turns between the curves). However, in some cases the machine could keep
working for several minutes before it found the intersection point; it always
did find it, but at a high cost of computer time. The performance was follo-
wed in detail, and in one case, where the angle between the two curves was
small, 210 attempts were counted before the intersection point was found
within the accuracy prescribed; in other cases the number may have been
still higher.

In order to save time we let the machine ’shoot” its way, (Fig. 5a). After
it had found four points, two on each curve, it calculated the point of inter-
section of two straight lines through them (label 13, Table 4), and used this
point as its next guess. This speeded up the approach considerably, but the
computer invented a number of practical jokes. Sometimes the machine
stopped because the shot had hit a point with negative U or V; this was easily
avoided by adding a new “’safety catch” (label 16).

In a number of cases, the computer was stuck in an infinite loop so that
it kept working on a single point for minutes without result (Fig. 5b). The
reason was found to be that for each adjustment one does not reach the curve
By = Bor A, = A4 exactly but is certain only to come within the limits By = B
4+ BE and Ay = A + BE, thus in a band surrounding the correct curves (in the
program, y, = BE). The closer one is to the intersection point, the larger will
be the risk that the small deviations will give a bad aim, so that the ’shot”
may even take one further away from the intersection point than one was
originally. Therefore, the computer was aiming and shooting madly to hit
the bull’s-eye but the hit-points bounced away.
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As a remedy, the requirements on fit were sharpened by decreasing E;
on the other hand, the bull’s-eye’’ was increased by giving printing order at
a larger tolerance, y = G,BE, each time one had solved the equation for B,
and first tried to see if the one for 4, was satisfied (labels 4-9-5). The
calculations were shortened in most cases, but eventually the computer could
again get stuck in a loop. This might probably have been remedied by de-
creasing ¥ and increasing G, further, but instead the calculation was inter-
rupted after a certain number, 7', of attempts; this is controlled by a counting
index . The number of attempts ¢, is printed as a check (label 5).

LETAGROP

Part 1 of this series of papers? described a general principle for adjusting
a number of unknown constants k, from measurements of the function y,
containing the constants searched for and a number of known quantities a,,
a@,... The principle is that the (weighted) error-square sum is calculated for a
number of points, as a function of the unknown constants (which are here
considered as variables). The error-square sum is approximated as a second-
degree equation and its minimum searched for. By using the D boundary”,
one can also derive expressions for the standard deviation’ of the various
constants.

Table 5. LETAGROP.
HP
Chapter I ; Title ; LETAGROP ; a—»13 ;0513 ;¢c»13;d=13 ;e>13; F»120;
g—»13;h>13; U>120;v-513; X>»2;Z-5120;
1) a’=1;2'=101 ; y'=201 ; ¥'=1001 ; w'=2001 ; b’=3001 ; ¢’=4001 ; d’=5001 ;
jump 7, L>O ]ump2 M=1; ]ump3 M=2; X,,—X 7—1(1)R read(g,),
read(h;) ; repeat ;j = 1;
5) M=1;s8= Y’mtpt( 5) 3 es-—es +h; ; across 3/0 ;
)XI—X es—es—2h M—2 across 3/0;
3) Xo=X;es=es+h Jump4 X,> X, 5 hj=—h ;w= Xl,Xl_X,,X,-—w,
4) 4, -0.25X,—0.25K 5 d;=0.25%; 4 0.25%s—0.8X 3 j =} 41 ; jummp 6, 1 R : jump 5
6) Y,(1)a, R;j=0;
11) =741 ; jump 12 >R ;
L=1(1)j ; v =0 ; repeat ; v;=d; ; jump 10, =R ; s =¥intpt(g;) ; es=es +h; ;
L—7+1

8) t—?’mtpt(gL) e; =¢;-+hy ; across 3/0 ;

7) vp =0.5X— 05X°+a +ar—d; dL,e,_e,—hL,L =L+1;jump 9, L> R ; jump 8 :
9) es=es—h;;

10) SO SR R ¥.(1001 4+-0O)v,, R ; jump 11 ;

12) a= —R’; s w’ EF’IG(IOOI aa) c=aa ; b’ ‘I’u (1001 2001,¢) ; ¢’ =¥ ,(4001,a) ;

¢/ —W3y(3001,R,R) ; 2 =W ,o(4001,1,a,1,a) 3 5 =¥ 5(101,1,1,1,a) ; ¥4(201)y.1
¥Y,(101)v,, R ; X=X.,—y sjump 14, X>0; X=X print;(——l)l,l ; newline ;

14) w=Q—P+1—N;y=X/w; w=¥sqrt(y) ; print(w)l,4 ; newline ;

7—1(1)R §= Y’mtpt(g]) pr1nt(3)2 0; es—es+hv print(es)2,3 ;
0= R7 R+7; ¥ (4000+0)w,1 X =wy ; Jump 13, 0> X ; w=¥sqrt(X) ; X =wh ;
print(X) 1,3 ;

13) newline ;repeat ;

newline ;’¢’ =¥ ;(5001,¢) ; across 14/0 ;

Ysqrt ; close ;

Chapter() variables 1 ; H=¥log(10) ; jump 1 ;

2) read(Q) ; K=1(1)@ ; read(FK) read(UK) read(ZK) repeat ; stop ; jump 14, R=—2

15) read(N) 2=1(1)N ; read(e;) ; repeat read(E) ;
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14) read(R) ; jump 15, B=—1 ; jump 2, —1> R ; read(P) ; read(Q) ; j=0;
L=0;M=0; K=P ;jump 3;

6) V=D;G@=2; E,=EB;jump 7;

8) Dy=¥mod(B,—B) ; jump 10, E,> D, ; jump 9, B> B,; 3=0.5; D=GD; V=V —-D;
jump 7 ;

9) .JD=IG)D ; V=V+D;jump 7;

1) w=2Z,—Zyg ; X=X +Gww ; jump 12, B> 0 ; newline ; print(K) 2,0 ; print(Fg)1,5
print(Ugk) 1,3 ; print(Zg) 1,3 ; print(Z,—2Zg) 1,4 ;

12) K=K 41 ;jump 13, K> Q ; jump 5;

13) print(10000X) 3,4 ; print(Q +1—P) 3,0 ; K =P ;newline ; jump 14 ; R=0;
across 1/1; = ;

SP
1) Title ; borat 3MNaClO, ; print(1.1)1,1 ; print(1.3)1,1 ; print(1.5)1,1 ;
newline ; jump 2 ;
3) X=0;¢=1(1)N ; b;=Wexp(He,;) ; print(e,)1,3 ; jump 4, 7 7 6 ; newline ;
4) repeat ;
5) B=Fg ; w=14.22 —Ug;U =Yexp(Hw) ; D=0.00] ; jump 6 ;
7) ¢y=b,UV ;ca=bUVVV ;ce=bUVVVVV; By=V+c;+3c3+5c;s; jump 8;
10) Co=cy+cCy+¢33Zy=Co/By; Go=1; jump 11;
Yexp ; close ; - ;

MD

90 ; 001 ; 6.283 ; 0.08 ; 0.01 ; 6342 ; 0.07 ; ;
Q F, U, z, F, U, Zy

DS

3 ; —9005 ; —6911 ; —6.620 ; 0.0001 ;

N € ey ey E

3 ;1 ; 9 ; 1 ; 002 ; 2 ; 005 ; 3 ; 0056 ;
R P Q (3% hy Js hy Js hy

0 ; 1 ; 9 ;

R P Q

Table 5 gives an HP, which is applicable under rather general conditions,
an SP, devised for a specific case from borate equilibria, and an example of
data, which consist of two parts: the experimental data MD (métdata) and
DS (”dagens spaning, = day’s orders for searching’).

It has been necessary to change the symbols a little from part I, partly to
use the language of the computer, partly to use symbols similar to those used
in the older programs Kuska, Proka and Halta.

The experimental data are assumed to be given as triplets of numbers
(Fg, Uy, Zy), with K from 1 to Q. The present program provides for at most
120 such triplets thus @ < 120. (This is ample for most work on mononuclear
complexes, but requires some random screening for most of our systems with
polynuclear complexes).

The unknown quantities, N in number, are denoted by e,...ey, and one
is assumed to know the function

Zy (Fy, Ug, €y...n) =Zy (7)

The only error present is assumed to be the random error in Zy; if a syste-
maitic error is suspected, it may be treated as another unknown constant e;.
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To each point measured one can assign a weight G, which can be expressed
as a function of known quantities; this expression, like everything else that
is special for the problem, is given in the SP.

The symbols in part I have been translated as follows to computer lan-

guage:

Part I kk N vy, | ay ay n w, U
Computer e, N Z, Z, Uy Fy Qor (@Q—P+1) G, X

+

Calculating the error square sum

After stopping at “close”, the computer begins to read the instructions
at ”Chapter 0”: it calculates H = In 10, prints the various p.q as before (1/0)*,
reads the @ triplets of data (label 2/0) and a set of approximate values for
e,...ey — calculated by graphical methods, estimated or guessed — and then
it searches for the error square sum. At first (3/0 SP), the ¢; may be recalculated
to quantities (here the b;) more suitable for the calculations. The following
treatment differs depending on whether (7) is given explicitly or not.

Implicit equations. The program is specially designed for cases with two
equations:

B == BO(U! V,el...eN) H ZK = Zo(U, V,el...eN) (8,9)

Here, B and U are functions of i and Uy which are given in the SP, label
5/0. Note that (9) differs from (7) in that V is unknown and must be eliminated
using (8).

In the present case, Z, is simply the number of OH bound per B(OH)j,,
B = F is the total boron concentration, U, = log [OH ] = log U, so that
U = 10Y«x. The equations (SP, 7/0) are easily recognized as expressing the
law of mass action, and the mass balance.

First, V is calculated from the set (B, U) using a Kuska loop (8, 9/0).
Then, Z and the weight G are calculated (SP, 10/0), the squared error multi-
plied by the weight, Go(Z, — Zy)?, is added to the error square sum X (HP,
11/0), and a new value for K is taken. When all points have been worked
through (13/0), 10 000 times the error square sum, 10 000 X, is calculated
and printed, together with the number of points (@ + 1 — P).

Explicit equations. If, on the other hand, (7) is given explicitly, the expres-
sion for Z can be calculated straightforwardly in the SP between (5/0) and
“jump 117, without any need to go through a Kuska loop. One should, how-
ever, set out the labels 7) and 10) at some harmless point, if one does not
care to delete the Kuska in the HP. (The computer does not accept ’jump”
instructions, even if void, without a corresponding label).

If the data consist of sets of two values (as for instance in the adjustment
of a straight line), U, = 0 may be written everywhere and not used, or the
HP may be rewritten for data pairs.

*1/0” means label 1 in chapter 0.
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Table 6. Example of results with LETAGROP.

LETAGROP

11 1.3 1.5

—9.006 —6.911  —6.620  4.0083 90
8985  _—6.911  —6.620 48430 90
9,025 —6911 6620 48535 90
—9.005 —6.861 —6620 6.8642 90
—9.005 —6.961  —6.620  7.8930 90
9005 —6.911 6570 41038 90
9,006 —6911  —6.670 41076 90
8985  —6.861  —6.620  8.7998 90
8985 —6.911 —6.570 4.9771 90
9,005 —6.861 —6570 77148 90
0.0021

1 —9.007  0.005

2 —6.903  0.008

3 _6.648  0.047

—9.007  —6.903  —6.648

1 001000 6283 0080  —0.0010
2 001000 6.342 0070  —0.0004
3 001000 6434 0054 0.0027
4 001000 6521  0.046 0.0018
5 001000 6.659  0.033 0.0015
6 001000 6.808 0024 0.0007
90  0.60000 7.568  0.095  —0.0039  3.9416 90

The first table gives e,, €,, €5, X and Q. Then comes the standard deviation of Z,
0.0021; the “’best’’ values of e,, ¢; and ey with their standard deviations; and a table of
the data (B, log U, Z) ending with the deviation in Z.

At lsst comes the error square sum with these best’’ values, and the number of
points, Q.

Variation of the ¢

All the operations described hitherto have been made in Chapter 0 of
HP + SP. When the error-square sum, X, has been calculated (13/0), the
computer passes across to 1/1, thus label 1 in Chapter 1, and begins to vary
the constants systematically; for each new set of e; it goes back to chapter
0 to calculate the error square sum X.

Through DS the computer has been told how many (R) constants it should
vary (14/0), and after (1/1) it is told their indices (g;...9g), and the steps to vary
them in (%,...h).

It may be helpful to compare Table 5 with Table 6, which gives an example
of the results, in a special case. The first line in Table 6 gives the first appro-
ximate values of the constants (let us call them ¢;) and the X value (X,)
obtained with them.

The first constant e; (s = ¢, is here = 1) is first set at e, + h, (5/1), the

error sum calculated and called X, (2/1), e, set at e, — hy, the error sum cal-
culated and called X,, and e, reset at e; (3/1). If the second error-square sum,
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X, is smaller than the first, e, should probably be decreased; then k, is re-
placed by (—#&,), and X, and X, change places. This is done in order to have
the mixed points (see below) as close as possible to the minimum point. —
This is repeated for all the e, to be varied.

For each e; (4/ 1) the quantltms a; and d; are calculated, which are related
to the constants in the general equatlon (part I, eqn. 42)

U = ¢y + 2Zcyx, + X Ze, (I:42)
With our notations we have

T = e — e; (s = g;) (10)

X0=co;X1——co+2c,,,h + ¢k

X, =1c¢cy— 2co1h + ¢; , (11)
Comparing eqn. (11) and Table 5 (4/1) we see that
@ =025 X, — 0.25 X; = — ¢y (12)
d; = 025X, + 0.25 X, —05X,=05¢ch? (13)

When this procedure has been repeated with all the constants e; to be varied,
the R terms a; are accumulated in the auxiliary store from box No. 1 on
(6/1).

Now (11/1,7/1) from box 1001 (v') on, a B X R matrix is laid out, row by
row, which will contain the elements (v,

vLi = 0 for L<j
;=d;,=05¢h2for L =j
v ;= cL,h h; for L<, (14)
The mﬂed” terms are obtained by calculating X for e, = ¢ + A,
(@, =h;, s=yg;) and ¢ = ¢\, + hy, (@ = by, t=gp).
This error-square sum, from (I:42) becomes
X = ¢y + 20k + 2co.hy, + k2 + ¢ hy? A 20k h; =
Xo — 2a; — 2a; + 2d; + 2d; + 2c, kb,
cphh; = 05X — 05X, +a,+a, —d;, —dy (15)
Thanks to the instructions (label 3/1), the e, sets with two constants varied
will usually be on the same side of ¢; as the minimum of the pit.

Matrix operations

From (12/1) on begins a series of matrix operations. The mirror image of
the matrix (14) is calculated and stored from box 2001 (w’) on. The sum of
the two matrices, which means the R X R quadratic form, ¢, };, is calculated
and stored from box 3001 (b’) on. The reciprocal of the latter is calculated and
stored from box 4001 (¢’) on by instruction Wog.

Multlphcatlon w1th the 1 X R matrix a; gives (eqn. 1:43a) the B correc-
tions z;" to the e to be varied, in units of h;. They are stored from box 101
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(z') on. In box 201 (y') is stored the sum — Xcqz;”, and then X at the minimum
point (eqn. 1:44), thus U,, is calculated. For each constant to be varied, the
corrected value is calculated by addition of Ayv;, and the standard deviation is
calculated and printed (eqn. I:41).

The last operation, ¢’ = %5 (5001, c) uses the zeros in the empty boxes
from 5001 on to “’sweep’” ¢’ for the next use.

Some of the more surprising ="’ and ¥ intpt” instructions in Table
5 have proved necessary since the computer is rather particular on having
indexes in some contexts and variables” in others. Reference is made to the
manual ¢ for details on matrix operations.

Check. Since there may be many pitfalls in working out a program like
this, we have checked the program on some textbook examples of finding the
parameters of a straight line. LETAGROP at onoce found the same answers (para-
meters and standard deviation) as the textbook, either it started with a bad
or a good guess. This is expected, since with a linear equation, the error square
sum is exactly a secondary degree function.

Procedure

A treatment with the program Letagrop gives, starting from an approxi-
mate set of constants, in general an improved set, and estimates of their
standard deviations. If the standard deviation of the data, ¢ comes out much
higher than expected, usually something is wrong with the input of the data,
or with the selection of the function (7).

If the function is linear, the minimum in the error squares’ sum is found at
once, however bad the first guess. On the other hand, for nonlinear functions,
the first approximation found may be in error and successive attempts must
be made. It is our experience that two or three approximations will in general
suffice, if the first guess was reasonably good. The further one is from the
minimum the more important become higher-degree terms. The matrix term
C,[C (eqn I:46) that occurs in the standard deviation D,*> may sometimes
come out as negative. To prevent the machine from stopping, a safety exit
has been inserted, so that only an empty space is left, as an indication that
the surface misbehaves. This may happen for very bad guesses, or for erro-
neous functions.

It will be seen from Table 5 how the index R is used for giving new orders.
If R is a positive number, it means the number of constants to be varied in a
new attempt. For B = 0, the computer uses the last best’’ set of constants
to calculate and print the deviation Z;, — Z; for each of the experimental
points. As a check of the input of the data, the experimental data (Fy, Uk,
Zy) are again printed (11/0).

For R = —2 new data are offered instead of the earlier ones (14—2/0),
whereas the SP and the ¢; are retained. With B = —1, (14—15/0) the data are
kept but the constants are changed. With R = —3, both data and constants
are changed.

By using the instruction “rmp”’ = “read more program’, one may make
the computer read a new “chapter 0", thus let it start on a new problem with-
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out the necessity for reading chapter 1 again. This may save some time in
studying series of problems with different SP.

A program as given in Table 5 is limited to 120 triplets of data, and 13
unknown to be varied. It would not be hard to rewrite the program, using the
auxiliary memory, or rearranging the quick memory, in order to increase the
number of unknown constants, or data sets.

For some reason, the matrix operations do not seem to work with B = 1.
So, with only one constant to be varied one would have to add a special prog-
ram, which we shall do on the day we meet with so simple a problem.

Examples of the results will be given in following papers.
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