The Crystal Structure of a Basic Hafnium Chromate # MARGARETA HANSSON and WANDA MARK Department of Inorganic Chemistry, Chalmers University of Technology and The University of Göteborg, P.O. Box, S-402 20 Göteborg 5, Sweden Hafnium chromate of approximate formula $Hf_4(OH)_8(CrO_4)_4$. H_2O crystallizes in space group *Pnnm* with a=11.543, b=13.587, c=6.847 Å and Z=2. It is isotypic with a corresponding zirconium compound with the formula $Zr_4(OH)_8(CrO_4)_5$. H_2O . with the formula $\text{Zr}_4(\text{OH})_6(\text{CrO}_4)_5\cdot \text{H}_2\text{O}$. The crystal structure of the hafnium compound has been determined from X-ray single crystal data by means of three dimensional Fourier syntheses. Least squares refinement of the structural parameters based on 818 independent reflexions yielded a final R value of 0.061. The hafnium atoms are joined by double oxygen bridges to form planar infinite chains with the composition $[Hf(OH)_2]_n^{2n+}$. The chains are connected by chromate groups to form a three-dimensional structure. Seven oxygen atoms are coordinated to each hafnium atom in a pentagonal bipyramidal arrangement. The Hf-O distances range from 2.01 to 2.25 Å. Some investigations have been performed in order to elucidate the differences between zirconium and hafnium with respect to their chemical behaviour and atomic sizes. The hydrolysis systems $\rm ZrO_2-SO_3-H_2O$ and $\rm HfO_2-SO_3-H_2O$ have been investigated by McWhan, Lundgren and Hansson ^{1,2} and the two systems show discrepancies as regards the conditions under which the different phases are formed. In the hydrolysis system $ZrO_2-CrO_3-H_2O$, three principally different crystalline phases are obtained.³ In attempts to prepare the corresponding phases in the $HfO_2-CrO_3-H_2O$ system, only one crystalline phase was found, namely $4HfO_2.4.3CrO_3.5.4H_2O$, the corresponding phase in the zirconium system having the composition $4ZrO_2.4.9CrO_3.3.7H_2O.^3$ Apart from the different compositions of the products, crystallization is more readily brought about in the zirconium system. The crystalline hafnium chromate is formed in very low yield and the crystals are small. # EXPERIMENTAL The hafnium chromate investigated was prepared by hydrothermal hydrolysis of an amorphous hafnium chromate in a 10 M chromium trioxide solution at 165°C. Due to the small amount obtained, the hafnium and chromium contents were determined by electron probe microanalysis. The results indicate an approximate formula of $\mathrm{Hf_4(OH)_8(CrO_4)_4.H_2O}$, which can also be written $4\mathrm{HfO_2.4CrO_3.5H_2O}$. By refining the structure with three-dimensional X-ray data, it was possible to establish the composition $4\mathrm{HfO_2.4.3CrO_3.5.4H_2O}$. The experimental and calculated hafnium and chromium contents are: | | $\%~\mathrm{Hf}$ | % Cr | |---|------------------|------| | Experimental | 53.9 | 16.2 | | Calculated for: | | | | $4 \mathrm{HfO}_{2}.4 \mathrm{CrO}_{3}.5 \mathrm{H}_{2} \mathrm{O}$ | 53.6 | 15.6 | | $4 \mathrm{HfO}_{2}.4 \mathrm{CrO}_{3}.6 \mathrm{H}_{2}\mathrm{O}$ | 52.9 | 15.4 | | 4HfO ₂ .4.3CrO ₃ .5.4H ₂ O | 52.2 | 16.3 | ## PROCESSING OF DATA From Guinier and Weissenberg photographs it was evident that the hafnium chromate structure is very nearly isomorphous with that of the corresponding zirconium chromate. The crystals are red truncated double pyramids, that used for the structure determination having a basal plane of 0.03×0.05 mm² (y and z directions) and a height of 0.05 mm. Due to the positions of the hafnium atoms in the structure, reflexions with k=2n are very strong while those with k=2n+1 are very weak. The crystal was therefore mounted along the y axis in a single crystal diffractometer (Philips PAILRED) and reflexions from the reciprocal layers h0l-h14l and $\overline{h}0l-\overline{h}14l$ with k even were registered with MoKa radiation. The ω scanning speed was 1°/min, and the total time for registration of one reflexion was 3 min for the lower levels and 6 min for the higher levels. A total of 1196 reflexions were collected with k even. The intensities of the reflexions with k odd are on an average one tenth of those with k even. In order to be able to estimate these weak reflexions with a better accuracy, they were registered with multiple film Weissenberg techniques and $\mathrm{Cu}K\alpha$ radiation. Each layer $(h1l-h9l,\ k=2n+1)$ was exposed for 2-3 weeks and the intensities of the 311 independent reflexions thus obtained were estimated visually by comparison with an intensity scale. # UNIT CELL DIMENSIONS The crystals have orthorhombic symmetry and the conditions for reflexion are: h0l with h+l=2n0kl with k+l=2n The conditions are in accordance with space groups No. 34, Pnn2, and No. 58, Pnnm. Accurate cell dimensions were obtained by least squares refinement of the cell parameters using the program POWDER.⁴ For this purpose 41 lines were indexed on a Guinier powder photograph taken with $\text{Cu}K\alpha_1$ radiation, using lead nitrate as an internal standard $(a_{\text{Pb(NO4)}} = 7.8566$ Å at 21°C).⁵ The cell dimensions and their standard deviations were found to be (for com- Table 1. Guinier powder data. $\lambda_{\mathrm{Cu}K\alpha_1} {=}~1.54050$ Å. | $h \ k \ l$ | $10^5 \sin^2 heta \ m obs$ | $10^5 \sin^2 heta$ calc | $d \ { m \AA} \ m calc$ | $I_{ m obs}$ | |--|------------------------------|---|--------------------------|------------------------------| | | | | | | | 101 | 1715 | 1711 | 5.8892 | ${f st}$ | | 120 | 1734 | 1731 | 5.8549 | ${f st}$ | | $2\ 0\ 0$ | 1785 | 1781 | 5.7715 | $\operatorname{\mathbf{st}}$ | | $1\ 3\ 0$ | 3346 | 3338 | 4.2162 | vvw | | (3 1 0 | 49.41 | (4329 | 3.7021 | | | $\{2\ 2\ 1$ | 4341 | 4332 | 3.7008 | w | | `2 3 0 | 4683 | `4673 | 3.5630 | vw | | $0\ 0\ 2$ | 5069 | 5062 | 3.4237 | \mathbf{vst} | | 0 4 0 | 5146 | 5142 | 3.3968 | \mathbf{vst} | | 3 0 1 | 5274 | 5273 | 3.3544 | vst | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 5299 | 5293 | 3.3480 | vst | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 6801 | $\begin{array}{c} 6792 \\ \end{array}$ | 2.9555 | vvw | | $\begin{pmatrix} 1 & 2 & 2 \\ 2 & 0 & 2 \end{pmatrix}$ | | (6843 | (2.9446) | V V VV | | 141 | 6851 | | 2.9425 | \mathbf{m} | | $\begin{array}{c} 1 & 4 & 1 \\ 2 & 4 & 0 \end{array}$ | 6934 | 6852 | $\frac{2.9425}{2.9275}$ | ~ 4 | | | | 6923 | | \mathbf{st} | | 4 2 1 | 9682 | 9675 | 2.4763 | ${f st}$ | | 0 4 2 | 10195 | 10203 | 2.4114 | vw | | 3 2 2 | 10359 | 10354 | 2.3937 | vw | | 3 4 1 | 10412 | 10415 | 2.3868 | vw | | 103 | 11840 | 11834 | 2.2391 | w | | 2~4~2 | 11990 | 11984 | 2.2250 | vw | | 160 | 12035 | 12014 | 2.2222 | \mathbf{w} | | $4 \ 4 \ 0$ | 12276 | 12266 | 2.1993 | vw | | $5\ 2\ 0$ | 12433 | 12417 | 2.1859 | \mathbf{m} | | $2\ 6\ 1$ | 14619 | 14615 | 2.0148 | w | | 3 0 3 | 15420 | 15396 | 1.9631 | w | | 360 | 15587 | 15576 | 1.9516 | \mathbf{m} | | $\overset{\circ}{1}\overset{\circ}{4}\overset{\circ}{3}$ | 16969 | 16975 | 1.8695 | w | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 17077 | 17076 | 1.8640 | vvw | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 17484 | 17479 | 1.8424 | w | | $\begin{array}{c} 6 & 2 & 2 \\ 6 & 2 & 1 \end{array}$ | 18581 | 18580 | 1.7869 | m | | $\begin{array}{c} 0 & 2 & 1 \\ 4 & 2 & 3 \end{array}$ | 19784 | | 1.7311 | | | | | 19798 | | w | | 461 | 19944 | 19959 | 1.7241 | w | | 0 0 4 | 20250 | 20246 | 1.7118 | vw | | [0 8 0 | 20593 | $\{20567$ | $\{1.6984$ | w | | $\begin{pmatrix} 3 & 6 & 2 \end{pmatrix}$ | | (20638 | 1.6955 | •• | | $\int 1 2 4$ | 22013 | $\int 21977$ | $\int 1.6431$ | vw | | $(2\ 0\ 4)$ | | 122027 | (1.6412) | * ** | | 181 | 22273 | 22278 | 1.6319 | vvw | | $2 \ 8 \ 0$ | 22351 | 22348 | 1.6293 | w | | 560 | 22727 | 22701 | 1.6166 | w | | $(7\ 0\ 1)$ | 99000 | (23083 | (1.6032) | | | 720 | 23090 | 23103 | $\{1.6025$ | \mathbf{m} | | 263 | 24740 | 24738 | 1.5486 | vvw | | $(3\ 2\ 4)$ | | (25539 | (1.5242 | | | $\{ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 25571 | $\{25629$ | 1.5215 | vw | | $\overset{(0}{2}\overset{0}{4}\overset{2}{4}$ | 27176 | 27169 | 1.4777 | vvw | | $\begin{array}{c} 2 & 4 & 4 \\ 5 & 6 & 2 \end{array}$ | 27741 | $\begin{array}{c} 27763 \\ 27762 \end{array}$ | 1.4619 | vvw | | $\begin{array}{c} 3 & 0 & 2 \\ 6 & 2 & 3 \end{array}$ | 28716 | 28703 | 1.4377 | vw | | U 4 0 | 40110 | 40100 | 1.40// | v w | parison those of the corresponding zirconium compound are given within brackets): ``` a = 11.543 \pm 0.002 \text{ Å} (11.629) b = 13.587 \pm 0.002 \text{ Å} (13.653) c = 6.847 \pm 0.001 \text{ Å} (6.882) V = 1073.9 + 0.3 \text{ Å}^3 (1092.7) ``` The observed and calculated values of $\sin^2\theta$ less than 0.30 are listed in Table 1, together with the calculated inter-planar spacings. As the experimental density could not be determined, the number of formula units per unit cell was assumed to be Z=2 as in the corresponding zirconium chromate structure. On the basis of this assumption, the calculated density is 4.18 g/cm³, which seems reasonable. #### STRUCTURE DETERMINATION AND REFINEMENT The two sets of data were corrected for Lorentz, polarization and absorption effects with the programs DATAP1 and DATAP2,6 respectively. To bring the different data sets on to the same scale, a structure factor calculation was performed, which was based on the hafnium atoms, assuming that the positional parameters were the same as in 4ZrO₂.4.9CrO₃.3.7H₂O. Successive three dimensional Fourier syntheses were calculated (program DRF 6) to obtain the positions of the chromium and oxygen atoms. In the calculations, the space group Pnnm was used and the positions of the atoms labelled Cr_1 , Cr_2 , $O_1 - O_{10}$, and O₁₂ could be determined without any ambiguity. All atoms occupy the special position 4(g) except O_1 and O_2 which are situated in the general position 8(h). This implies the composition $Hf_4(OH)_8(CrO_4)_4.2H_2O$ or $4HfO_2.4CrO_3$. 6H₂O. The O₁₂ atoms correspond to the two water molecules of crystallization per formula unit. A Fourier synthesis, based on the refined atomic parameters, showed small excesses of electron density at very nearly the same positions as the Cr₃ atoms in the zirconium chromate structure. It was therefore considered likely that the hafnium compound contained a small additional amount of chromate (Cr₃). These chromate groups must be statistically distributed between four equivalent positions, as will be seen later. As the additional chromate oxygen atoms (O₁₁) could not be located from the Fourier syntheses, they were assumed to occupy the same positions as in the zirconium structure. Refinement of the parameters was performed with the program BLOCK, 6 different occupation numbers being assigned to Cr₃. In the different refinements, the occupation number of O₁₁ was assigned the same value, q, as that of Cr_3 . The occupation number for O_{12} , (1-q), (cf. later) was deduced from the positional relationship between Cr₃ and O₁₂. The best fit with the experimental data was obtained for an occupation number of 0.14 for Cr_3 and thus of 0.86 for O_{12} . A few cycles of refinement with the least squares full matrix program LINUS 6 showed that secondary extinction effects were of little importance. The final cycles of refinement were performed with the program LALS.6 Table 2. Observed and calculated structure factors for $\sim \mathrm{Hf_4(OH)_8(CrO_4)_4.H_2O.}$ | H 0 0
2 513 457
6 150 -131
8 211 -187
10 350 -335 | H 0 11
1 105 111
3 105 100
9 95 -87 | 9 125 -125
13 84 89
H 2 9
4 160 -165 | H 4 8
0 237 -228
2 141 -149
10 154 157
12 129 136 | H 6 B
3 155 152
5 175 173
7 119 129
9 94 88 | H 8 9
1 154 162
9 96 -101
H 8 10 | |---|--|---|---|---|---| | 10 330 -335
12 289 -266
14 104 -93
20 87 82
22 78 90
H 0 1 | H 0 12
0 126 144
10 95 -84
12 80 -75
H 0 13 | 6 192 -196
8 99 -59
H 2 10
3 146 -136
5 118 -137 | F 4 9 1 148 -153 3 125 -129 7 97 87 9 127 125 | H 6 9 2 94 92 4 153 160 6 156 158 8 101 88 | 0 132 152
2 122 115
10 126 -101
H 8 11
1 105 112 | | 1 448 432
3 478 455
5 70 65
7 359 -314
9 27C -258
11 187 -184 | 1 94 84
H 0 14
D 96 99 | 7 111 -110
H 2 11
4 109 -113
6 131 -137 | 11 113 113
13 86 80
H 4 10
O 189 -187
2 119 -122 | H 6 10
3 118 126
5 133 143
7 110 103
9 94 63 | H 10 0
3 214 -216
5 405 -394
7 285 -283
9 105 -108 | | 13 181 -169
15 134 -116
F 0 2
0 803 816 | 1 291 -296
3 501 -493
5 490 -453
7 314 -314
9 271 -255 | H 2 12 3 85 -83 H 4 0 2 377 -383 4 215 -208 | 10 118 126
H 4 11
1 110 -104
3 98 -90 | H 6 11
4 104 109
6 118 111 | 13 93 97
15 151 141
17 121 122
H 10 1
1 33 -25 | | 8 110 -113
10 294 -282
12 256 -245
14 103 -100 | 13 204 188
15 184 177
17 106 110
H 2 1
2 108 -112
4 372 -380 | 6 86 74
8 228 223
10 343 331
12 273 260
14 94 54 | H 4 12
0 133 -119
2 95 -76
H 6 0
1 206 249 | 2 334 333
4 179 180
6 98 -69
8 250 -231
10 261 -252
12 204 -191 | 2 204 -213
4 253 -245
6 254 -252
8 236 -219
10 107 -91
12 113 92 | | H 0 3
1 453 454
3 399 405
5 65 51
7 317 -310
9 267 -265
11 177 -186 | 6 524 -509
8 236 -223
14 123 120
16 194 183
18 120 118 | H 4 1
1 315 -345
3 329 -337
5 161 -144
7 192 167
9 295 262 | 3 476 454
5 442 426
7 270 269
9 169 164
13 133 -129
15 159 -153 | 12 204 - 191
14 114 - 105
20 99 80
H 8 1
1 350 378
3 222 220 | 14 154 137
16 111 116
H 10 2
1 68 -26
3 155 -153 | | 11 177 -186
13 148 -153
15 125 -100
19 88 93
21 82 80 | H 2 2 1 205 -212 3 298 -311 5 319 -316 7 249 -255 9 268 -248 | 11 253 243
13 156 159
15 84 £1
19 93 -84 | 17 148 -125
H 6 1
2 232 233
4 396 393
6 377 374 | 7 144 - 130
9 219 - 209
11 235 - 232
13 158 - 151 | 5 325 - 327
7 240 - 248
9 105 - 107
13 97 79
15 141 128
17 128 119 | | 0 631 661
2 256 304
6 85 -72
8 135 -132
10 251 -263
12 212 -221 | 13 166 158
15 157 159
17 105 108
19 88 77 | 0 457 -461
2 250 -264
4 161 -171
8 158 153
10 287 282
12 257 240 | 8 165 170
16 178 -157
18 109 -106
H 6 Z
1 192 189 | 0 374 369
2 248 258
4 148 159
8 193 -179
12 185 -176
14 127 -109 | H 10 3
2 208 -213
4 241 -259
6 244 -249
8 211 -205 | | 14 95 -85
H C 5
1 250 266
3 255 269
5 80 61 | 2 173 -161
4 412 -415
6 478 -480
8 209 -211
12 89 78
14 122 122 | 14 117 101
H 4 3
1 382 -384
3 309 -320
5 111 -108 | 3 313 321
5 320 326
7 215 225
9 177 163
15 146 -138
17 141 -122 | H 8 3
1 383 383
3 206 214
7 137 -144
9 205 -212 | 10 87 -75
12 110 95
14 147 135
16 115 111
H 10 4 | | 7 195 -193
9 182 -189
11 136 -144
13 134 -135
15 100 -96
19 80 79 | 16 176 172
18 104 107
H 2 4
1 188 -189
3 321 -317 | 7 201 207
9 277 260
11 236 234
13 133 145 | H 6 3
2 242 241
4 384 399
6 344 362
8 166 167 | 11 220 -224
13 151 -139
17 89 33
H 8 4
0 346 347 | 3 149 -163
5 301 -303
7 225 -227
9 85 -93
15 116 119
17 104 108 | | + 0 6
0 430 466
2 230 239
8 96 -113
10 200 -216 | 5 304 -310
7 233 -240
9 207 -205
13 163 150
15 146 148
17 99 96 | 0 440 -443
2 275 -272
4 139 -139
8 155 160
10 261 262
12 214 215 | 14 132 -120
16 173 -149
H 6 4
1 164 161
3 303 302 | 2 247 250
4 149 139
8 179 -175
10 202 -204
12 168 -160 | H 10 5
2 145 -148
4 178 -181
6 178 -187
8 166 -165 | | 12 182 -183
H 0 7
1 233 245
3 198 213
7 169 -169 | H 2 5
2 80 -80
4 254 -260
6 337 -338
8 163 -165 | 14 87 86
H 4 5
1 227 -237
3 213 -223
5 91 -93 | 5 304 312
7 218 214
9 136 138
13 94 -104
15 126 -129
17 114 -110 | H 8 5
1 249 261
3 154 155
7 97 ~89
9 157 ~156
11 189 ~179 | 14 114 108
H 10 6
3 130 -139
5 235 -246
7 191 -187 | | 9 171 -173
11 124 -128
13 105 -106
15 87 -70
H C 8 | 14 99 91
16 149 147
H 2 6
1 146 -140
3 249 -250 | 7 128 129
9 199 201
11 175 182
13 124 129
15 88 69 | H 6 5 2 142 148 4 249 261 6 258 261 8 132 136 14 102 -92 | 13 120 -122
H 8 6
0 258 275
2 199 202
4 106 111
8 154 -145 | 15 109 101
H 10 7
2 116 -132
4 158 -170
6 162 -165
8 131 -134 | | 0 263 295
2 142 160
8 79 -70
10 149 -156
12 133 -140
H 0 9 | 5 226 - 246
7 190 - 195
9 146 - 162
13 109 125
15 124 125 | 9 343 -346
2 220 -219
4 94 -104
8 133 132
10 215 216
12 181 177 | 14 102 -92
16 133 -127
18 96 -88
H 6 6
1 112 118
3 240 235 | 10 166 -170
12 153 -134
H 8 7
1 227 232
3 105 133 | H 10 8
5 164 -174
7 131 -137 | | H C 9 1 151 165 3 140 146 7 114 -114 9 136 -122 H C 10 | H 2 7
2 88 -96
4 244 -242
6 277 -280
8 137 -135
16 129 123 | 12 181 177
14 82 71
H 4 7
1 221 -224
3 182 -185
7 148 126 | 5 240 251
5 241 251
7 169 177
9 109 111
15 94 -110 | 9 148 -142
11 157 -153
H 8 8
0 177 184
2 134 141 | 4 122 -121
6 101 -118
8 101 -100
H 10 10
3 85 -84 | | 0 226 229
2 130 131
10 121 -126
12 108 -107 | H 2 8
1 87 -94
3 151 -161
5 145 -164
7 139 -139 | 9 182 178
11 134 154
13 91 102 | 2 134 137
4 229 233
6 228 224
8 125 116
16 101 -106 | 4 81 82
8 90 -99
10 112 -124
12 98 -103 | 5 140 -141
H 10 11
2 79 -65
6 98 -84 | Table 2. Continued. | H 12 C
2 256 -265 | H 14 4
3 141 145
5 228 239
7 169 171 | 716* | 7 33 28 | 13 16 -17 | 6 62 -51 | |---|--|--|---|--|---| | 4 180 -169 | 5 228 239 | 9 39 -36 | 9 76 75 | H 5 3 | 8 - 4+ | | 4 180 -169
6 89 83
8 218 215 | 7 169 171 | 8 26 30
9 39 -36
10 50 59
114* | 10 - 6* | 0 23 28 | 9 34 -30 | | 2 256 -265
4 180 -169
6 89 83
8 218 215
10 182 181 | H 14 5 | 716* 8 26 30 9 39 -36 10 50 59 114* 12 33 45 13 21 42 | 7 33 28
8 - 8*
9 76 75
10 - 6*
11 56 62
1214*
13 12 15 | 2 - 18* | 6 62 -51
7 80 -65
8 - 4*
9 34 -30
10 - C*
11 43 44
12 62 -66 | | H 12 C
2 256 -265
4 180 -169
6 89 83
8 218 215
10 182 181
12 110 132 | 2 153 146
4 157 160 | 13 21 42 | 7 33 28
8 - 8*
9 76 75
10 - 6*
11 56 62
1214*
13 12 15 | 3 57 57 | 12 62 -66 | | | 6 121 128 | H 1 5 | н з 4 | 0 23 28
1 24 26
2 - 18*
3 57 57
4 20 -28
5 43 -36
6 68 57
7 74 -63 | H 7 3 | | 1 316 -332 | 8 125 119 | 09* | 1 34 41 | 6 68 57 | 0 54 54 | | F 12 1
1 316 -332
3 133 -131
7 75 74
9 168 160
11 218 208
13 122 126 | H 14 6
3 125 122
5 204 200 | 26* | 315* | 8 72 66 | 2 34 -25 | | 9 168 160
11 218 208 | 3 125 122
5 204 200 | 3 25 -25 | 42* | 9 25 -25 | 325* | | 1 316 -332
3 133 -131
7 75 74
9 168 160
11 218 208
13 122 126 | 7 146 144 | H 1 5
099
1129
264
3 25 -25
4 - 55
5 - 158
6 38 -44
7 29 33
8 27 -34
9 - 10°
10 - 0°
11 19 30 | H 3 4
1 34 41
2 53 -62
315*
42*
5 21 15
6 30 35
7 59 60
8 - 6*
9 34 40
10 34 34
11 29 -34
12 54 69 | H 5 3 0 23 28 1 24 26 2 - 18* 3 57 57 4 20 -28 5 43 -36 6 68 57 7 74 -63 8 72 66 9 25 -25 103* 11 42 -50 12 33 -42 13 35 -57 | F 7 3
0 54 54
1 40 -41
2 34 -25
3 -25*
4 105 -106
5 84 72
6 -13*
7 -8*
8 - 12*
9 67 -66
10 25 -14
11 52 -59 | | | H 14 7 | 6 38 -44 | 7 59 60
8 - 6* | 12 33 -42
13 35 -57 | 613* | | 0 257 -241 | H 14 7
2 133 128
4 130 145
6 107 115
8 106 100 | 8 27 -34 | 9 34 40 | ., ,, ,, | 8 - 12* | | 2 218 -222
4 141 -155
8 183 180
10 147 157 | 4 130 145
6 107 115 | 9 - 10* | 10 34 34
11 29 -34 | H 5 4 | 9 67 -66 | | 8 183 180 | 8 106 100 | 11 19 30 | 12 54 69 | 2 39 -43 | 10 25 -14
11 52 -59 | | H 12 2
0 257 -241
2 218 -222
4 141 -155
8 183 180
10 147 157
12 111 122 | H 14 8
5 152 148
7 98 109 | H 1 6 | н 3 5 | 3 47 50
4 - 13# | H 7 A | | | 5 152 148 | 1 - 8* | 0 33 -38 | 5 52 53 | 1 54 -58 | | H 12 3
1 330 -326 | | 2 - 10* | 1 26 31
2 18 16 | 6 20 20
71* | 2 78 79
3 19 23 | | 3 132 -131 | h 14 9
2 90 93
4 105 105
6 88 84 | 47* | 3 - 6* | 8 39 -38 | 4 - 5* | | 9 177 161 | 2 90 93
4 105 105
6 88 84 | 529*
6 - 1* | 4 43 52
5 39 -52 | 9 - 13*
10 75 -85 | 58*
6 45 -47 | | 1 330 -326
3 132 -131
7 83 85
9 177 161
11 207 201
13 115 117 | h 14 9
2 90 93
4 105 105
6 88 84 | 716* | 6 24 20 | 11 25 29 | 7 60 -62 | | 13 117 117 | н 1 0 | H 1 6 1 - 8* 2 - 10* 329* 47* 529* 6 - 1* 716* 8 - 26* 9 20 -28 10 30 45 | 0 33 -38
1 26 31
2 18 16
3 - 6*
4 43 52
5 39 -52
6 24 20
7 - 9*
8 - 0*
9 42 48 | 1Z Z5 -36 | 6 62 -51
7 80 -65
8 - 49
9 34 -30
10 - 62
11 43 44
12 62 -66
7 7 3
0 54 54
1 40 -41
2 34 -25
3 105 -106
5 8 - 128
8 - 128
9 67 -66
10 25 -14
11 52 -59
17 4 54 -58
2 7 6 58
10 54 54 54
7 7 -66
10 25 -14
10 54 54 58
10 54 56 58
10 64 58 68
10 68 68 68 68 68
10 68 68 68 68 68
10 68 68 68 68 68 68 68 68 68 68 68 68 68 | | F 12 4 | 2 30 30 | 10 30 49 | 9 42 48 | H 5 5 | 105* | | 0 233 -232
2 207 -209 | 412* | | 1 34 41 2 53 -62 3 -15* 42* 5 21 15 6 30 35 7 59 60 8 - 6* 9 34 40 10 34 34 11 29 -34 12 54 69 H 3 5 0 33 -38 1 2 18 16 31 2 18 16 3 - 6* 4 43 52 5 39 -52 6 24 20 7 - 9* 8 - 0* 9 42 48 10 - 11* 11 31 45 | 0 - 18*
1 - 15* | 11 34 46 | | 4 135 -138 | 5 99 -70 | 07* | | 2 - 6* | H 7 5 | | P 12 4
C 233 -232
2 207 -209
4 135 -138
6 79 61
8 171 172
10 149 150 | 2 30 30
3 100 -71
412*
5 99 -70
61*
7 27 -16
8 61 53
9 64 -8
111 - 2*
12 56 57
13 62 58
14 16 18 | H 1 7 0 - 7-7* 112* 27* 3 18 -19 47* 5 - 9* 6 27 -40 7 22 33 8 17 -27 H 3 C 1 70 68 2 117 -104 3 11 -34 4 - 7* 5 61 39 6 68 52 7 108 84 8 21 17 9 57 73 10 64 47 11 51 -50 12 93 85 13 69 -60 14 29 31 | H 3 6 1 19 28 2 32 -42 364 434 5 -144 6 22 26 7 36 46 88* 9 24 32 10 17 28 H 3 7 C 18 -24 116* 212* 34* 4 33 46 5 24 -34 6 21 26 7 14 16 | h 5 4 1 40 -37 2 39 -43 3 47 50 4 -13** 5 52 5** 6 20 20 7 -1** 10 75 -85 11 25 29 12 25 -36 h 5 5 2 7 -36 h 5 6 1 -15** 3 34 35 5 25 -36 h 5 6 1 -15** 3 34 35 5 25 -31 2 4 -31 3 29 39 4 -31 3 29 39 4 -10** 5 30 40 6 -15** 7 -10** 8 23 -34 9 -11** 1 24 -28 2 27 -31 3 29 39 4 -10** 5 30 40 6 -15** 7 -10** 8 23 -34 9 -11** 1 18** 2 - 7** 3 - 18** 1 24 -28 2 27 -31 3 29 39 4 - 10** 5 30 40 6 - 15** 7 - 18** 1 24 -28 2 27 -31 3 29 39 4 - 10** 5 30 40 6 - 15** 7 - 18** 1 24 -28 2 - 7** 3 - 28** 4 - 10** 3 - 28** 4 - 10** 5 18 -24 6 24 37 7 23 -37 | 0 33 36
1 27 -29 | | 10 149 150 | 8 61 53 | 3 18 -19 | 1 19 28
2 32 -42
36*
43*
5 - 14*
6 22 26
7 36 46
8 - 8*
9 24 32
10 17 28 | 5 25 -32 | 2 20 -23 | | H 12 5 | 10 94 81 | 5 - 91 | 43* | 7 34 -38 | 4 63 -69 | | 1 248 -241
3 110 -98
9 126 122
11 169 164
13 111 103 | 11 - 2* | 6 27 -40 | 5 - 14* | 8 46 53 | 5 54 60 | | 3 110 -98
9 126 122
11 169 164
13 111 103 | 13 62 58 | 8 17 -27 | 7 36 46 | 10 - 4* | 7 - 3* | | 11 169 164
13 111 103 | 14 16 18 | н з с | 8 - 8*
9 24 32 | 11 21 -31 | 8 - 16* | | | F 1 1 | H 3 C
1 70 6E
2 117 -104
3 41 -34
4 - 7*
5 61 39
6 68 52
7 108 68 52
7 108 42
8 21 17
9 57 53
10 64 47
11 51 -55
12 93 85
13 69 -60
14 29 31 | 10 17 28 | H 5 6 | , 42 -40 | | H 12 6
O 179 -192
2 186 -172 | 0 21 -25
1 19 -23
2 10 -11
3 72 -56
4 17 21
5 38 33
6 99 -74
7 70 55
8 66 -53
9 31 12 | 2 117 -104
3 41 -34 | H 3 7 | 1 24 -28
2 27 -31 | H 7 6 | | 0 179 -192
2 186 -172
4 112 -113
8 135 143
10 119 127
12 104 95 | 2 10 -11 | 7* | 0 18 -24 | 3 29 39 | 2 47 57 | | 4 112 -113
8 135 143
10 119 127
12 104 95 | 3 72 -56
4 17 21 | 5 61 39
6 68 52 | 1 - 16*
2 - 12* | 4 - 10*
5 30 40 | 3 - 14*
4 - 5* | | 10 119 127 | 5 38 33 | 7 108 84 | 3 - 4* | 6 - 15* | 510+ | | | 6 99 -74
7 70 55 | 8 21 17
9 57 53 | 4 33 46
5 24 -34 | 7 - 0*
8 23 -34 | 6 30 -36
7 39 -49 | | H 12 7 | 8 66 -53 | 10 64 47 | 0 18 -24
1 - 16*
2 - 12*
3 - 4*
4 33 46
5 24 -34
6 21 26
7 14 16 | 9 - 11+ | 67* | | H 12 7
1 210 -210
3 84 -88
9 128 111
11 159 141 | 10 - 7* | 1 70 68
2 117 -104
3 41 -34
4 - 7*
5 61 39
6 68 52
7 108 84
8 21 17
9 57 53
10 64 47
11 51 -50
12 93 85
13 69 -60
14 29 31 | 7 14 16 | H 5 7 | H 7 7 | | 9 128 111
11 159 141 | 11 40 44 | 13 69 -60 | F 5 0 | 0 - 19* | 0 21 26 | | 11 157 141 | 1 1 0 21 -25 1 19 -23 2 10 -11 3 72 -56 4 17 21 5 38 33 6 99 -74 7 70 55 8 66 -53 9 31 12 10 - 7 ** 11 4C 44 12 23 20 13 45 47 14 18 21 | 14 29 31 | + 5 0
1 33 -42
2 36 -46
3 70 67
4 - 17*
5 108 82
6 31 27
73*
8 74 -58
9 1 - 13*
10 132 -114
11 40 28
12 48 -47
13 32 -30 | 2 - 7* | 216* | | H 12 8
O 131 -132
2 115 -124
8 89 103 | 14 18 21 | F 3 1 | 3 70 67 | 3 - 28* | 312* | | 0 131 -132
2 115 -124 | H 1 2 | 1 62 70 | 5 108 82 | 5 18 -24 | 5 28 40 | | | 2 32 40 | 2 31 28 | 6 31 27
73# | 6 24 37 | нас | | H 12 9
1 145 -151
3 71 -63 | 3 51 -47 | 4 114 93 | 8 74 -58 | | 1 51 60 | | 1 145 -151
3 71 -63 | 5 39 -34 | 6 44 29 | 10 132 -114 | H 7 0
1 67 -80 | 2 61 59
3 65 -67 | | | 610* | 7 28 18 | 11 40 28 | 2 111 115 | 4 27 -26 | | F 12 10
0 100 -111
2 57 -101 | 8 29 20 | 9 89 71 | 13 32 -30 | 44* | 612* | | 2 57 -101 | 1 1 0 21 -25 1 19 -23 2 10 -11 3 72 -15 4 17 2 3 3 3 3 3 3 3 3 4 7 14 18 2 1 2 2 3 2 4 2 3 5 1 4 4 4 5 3 9 5 1 4 5 6 5 6 5 8 9 9 5 1 4 5 6 | H 3 1
C 78 -88
1 62 70
2 31 28
3 - 13*
4 114 93
5 102 -5C
6 44 29
7 28 18
8 - 2*
9 89 71
10 - 12*
11 68 62
121*
13 21 15 | F 5 1 | 5 34 -23
6 80 -47 | 7 - 5*
8 70 71 | | H 14 0 | 1114* | 121* | 0 - 16* | 7 103 -83 | 9 29 -15 | | 1 31 47
3 188 186 | 12 44 46
13 43 39 | 13 21 15
14 36 -43 | 1 11 12 | 812* | 10 82 88 | | 3 188 186
5 296 294
7 201 206
15 106 -108 | 14 17 23 | | 3 74 65 | 10 24 -7 | 12 - 23+ | | H 14 0
1 31 47
3 188 186
5 296 294
7 201 206
15 106 -108 | H 1 3 | 1 56 59 | H 3 6 1 19 28 2 32 -42 36* 43* 5 - 1-8* 6 22 26 7 366 46 7 366 46 1 - 12* 34* 4 33 46 5 24 -34 6 7 14 16 1 33 -44 1 33 6 -46 3 10 17 5 108 82 6 31 27 73* 8 74 -58 9 - 11* 11 40 28 11 12 2 32 22 3 32 -30 1 11 12 2 32 22 3 74 65 4 39 -46 5 78 3 -59 8 91 74 6 78 3 -59 8 91 74 911* 10 - 3* 8 91 74 6 77 83 -59 8 91 74 911* 10 - 3* 8 91 74 6 78 3 -59 8 91 74 911* 10 - 3* 8 91 74 911* 10 - 3* 8 91 74 911* 10 - 3* 8 91 74 911* 10 - 3* 8 91 74 911* 10 - 3* 8 91 74 911* 10 - 3* 8 91 74 911* 10 - 3* 8 91 74 911* 10 - 3* 8 91 74 911* 10 - 3* 8 91 74 911* 10 - 3* 8 91 74 911* 10 - 3* 8 91 74 911* 10 - 3* 8 91 74 911* 10 - 3* 11 50 -44 12 38 -50 13 55 -60 | H 7 0
1 67 -80
2 111 115
3 33 33 34 -23
5 34 -23
6 80 -67
7 103 -83
8 - 120
9 36 -35
10 24 -7
11 70 62
12 83 -71
13 34 41 | H 9 1 | | | 0 18 -22 | 2 83 -83 | 6 77 56 | 13 34 41 | 0 33 -40 | | 2 193 196
4 225 214 | 210* | 3 33 -31
42* | 7 83 -59
8 91 74 | H 7 1 | 1 29 -33
2 - 0* | | H 14 1
2 193 196
4 225 214
6 168 168
8 136 149
10 97 77
14 110 -113
16 108 -90 | 3 42 -44 | 5 - 3* | 911+ | 0 54 66 | 3 55 -51 | | 8 136 149 | 5 22 25 | 7 80 64 | 11 50 -44 | 2 41 -33 | 5 89 72 | | 6 168 168
8 136 149
10 97 77
14 110 -113
16 108 -90 | 6 75 -73
7 63 60 | 87*
9 53 48 | 10 - 3*
11 50 -44
12 38 -36
13 55 -60 | 3 16 -26
4 132 -110 | 6 75 -60
7 52 42 | | 16 108 -90 | 8 46 -48 | 10 45 30 | | 5 111 91 | 8 96 -83 | | | 9 31 29
10 - 10* | 11 29 -30
12 76 76 | H 5 2
1 48 -52 | 6 - 1*
7 - 0* | 9 - 2*
10# | | + 14 2
3 142 149
5 258 256
7 184 184
15 102 -98 | H 1 3 0 18 -22 1 28 -29 2 10* 3 42 -44 45* 5 22 25 6 75 -7 6 3 60 8 46 -48 9 31 29 10 10* 11 37 48 12 21 30 44 | + 3 2 1 56 59 2 83 -83 3 35 -37 42* 5 - 3* 6 46 36 7 80 64 36 87* 9 53 46 10 45 30 11 29 -30 12 76 76 13 43 -39 14 24 36 | 1 48 -52
2 50 -61
3 55 50
4 - 11*
5 71 58 | H 7 1 0 54 66 1 46 -55 2 41 -33 3 16 -26 4 132 -110 5 111 91 6 - 1* 7 - 0* 8 26 20 9 80 -65 1021* 11 70 -61 | 11 50 44 | | 3 142 149
5 258 256
7 184 184 | 12 21 30
13 30 44 | | 3 35 50
4 - 11* | 9 80 -65
1021* | 12 35 40 | | 15 102 -98 | | H 3 3 | 5 71 58 | H 7 1 0 54 66 1 46 -55 2 41 -33 3 16 -26 4 132 -110 5 111 91 6 - 1* 7 - 0* 8 26 20 9 80 -65 1021* 11 70 -61 | F 9 2 | | H 14 3 | H 1 4
1 - 15*
2 - 20* | 1 38 44 | 0 34 31
75* | H 7 2 | 2 70 66 | | 2 191 192
4 224 215
6 177 167 | 1 - 15*
2 - 20*
3 40 -41
410*
5 33 -37 | 0 51 -61
1 38 44
2 23 20
3 - 11*
4 91 92
5 67 -69 | 8 33 -29 | H 7 2 1 76 -77 2 104 105 3 38 38 4 - 8* 5 - 4* | 3 58 -53
4 25 -19 | | 6 177 167 | 410* | 4 91 92 | 10 98 -88 | 3 38 38 | 5 62 -51 | | 2 191 192
4 224 215
6 177 167
8 138 143
14 128 -111 | H 1 4
1 - 15*
2 - 20*
3 40 -41
410*
5 33 -37
61* | H 3 3
0 51 -61
1 38 44
2 23 20
3 - 11*
4 91 92
5 67 -69
6 44 41 | F 5 2
1 48 -52
2 50 -61
3 55 50
4 - 11*
5 71 58
6 34 31
75*
8 33 -29
9 - 17*
10 98 -88
11 42 41
12 37 -35 | H 7 2
1 76 -77
2 104 105
3 38 38
4 - 8*
5 - 4* | H 7 5 0 33 36 1 27 -29 2 20 -23 314* 4 63 -69 5 54 60 61* 8 1 35 -42 2 47 57 310* 6 30 -36 7 39 -49 87* H 7 7 0 21 26 116* 37* 318* 4 39 -58 5 28 40 1 51 50 61 59 3 65 -67 7 -58* 8 79 71 9 29 -15 10 82 88 11 40 -34 12 -23* H 9 1 12 -33 3 -40 1 29 -33 55 -51 1 7 -62 7 - 58* 8 79 71 9 29 -15 6 7 52 43 8 96 -83 98* 11 29 -33 8 96 -83 98* 11 20 44 12 35 40 1 7 1 67 2 70 66 7 52 43 8 96 -83 98* 11 20 44 12 35 40 1 71 67 2 70 66 7 52 43 8 96 -83 98* 11 27 10 67 2 70 66 7 52 73 8 96 -83 98* 11 25 44 12 35 40 17 1 67 2 70 66 2 58 -53 4 25 -18 5 62 -51 614* | | | | | | | _ | Acta Chem. Scand. 27 (1973) No. 9 Table 2. Continued. | 8 | 53 | 46 | 3 | 44 | -46 | н | 9 | 4 | 5 | - | -14# | 5 42 | 49 | 4 | 22 | -11 | |----|----|------|----|----|-----|---|----|------|----|----|-------|------|-----|---|----|-----| | 9 | 23 | -20 | 4 | 53 | 50 | 1 | 48 | 48 | 10 | 43 | 67 | 6 36 | -43 | | | -36 | | 10 | 64 | 67 | 5 | 65 | 60 | 2 | 49 | 47 | | | | 7 23 | 30 | 6 | - | ~5* | | 11 | 41 | -41 | 6 | 59 | -55 | 3 | 46 | -47 | н | 9 | 5 | 8 49 | -61 | | | | | | | | 7 | 48 | 48 | 4 | - | -16* | 0 | - | - 22* | | | | | | | | 9 | 3 | | 73 | | | | -45 | 1 | - | -19* | н 9 | 6 | | | | | | | -41 | 9 | - | 16* | | | - 8* | | | 3* | 1 3 | | | | | | | | -35 | 10 | - | -3* | | | 0. | | | -28 | 2 28 | | | | | | 2 | - | - 4* | 11 | 35 | 48 | 8 | 44 | 50 | 4 | 33 | 43 | 3 2 | -36 | | | | These were based on a data set consisting of 509 strong structure factors with k=2n and 313 weak structure factors with k=2n+1. Mean values of F_{hkl} and $F_{\bar{h}kl}$ for k=2n were used, those reflexions that did not occur twice being eliminated. Positional parameters, including isotropic temperature factors, and layer scale factors were refined, only one of the four oxygen atoms $O_7 - O_{10}$ being refined at a time. These four oxygen atoms were refined alternately until the shifts were negligible. This method of refinement was necessary owing to coupling between the x and y parameters of $O_7 - O_{10}$. Cruickshank's weighting scheme was used, and the refinement yielded a final R value of 0.061. The final R factor based on the strong structure factors was 0.046, while that based on the weak structure factors was 0.158. No correction was made for anomalous dispersion since the data set consisted partly of reflexions obtained with copper and partly of reflexions obtained with molybdenum radiation. The positional parameters were also refined with all atoms occupying the general position 4(c) in space group Pnn2. After several cycles of refinement, the parameter shifts had still not converged. The space group Pnnm was therefore considered to be the correct one. Table 3. Atomic coordinates, expressed as fractions of the cell edges, and isotropic thermal parameters in Å². Standard deviations are given within brackets. | Atom | Occ.
number | x | $oldsymbol{y}$ | z | В | |--------------------------------------|----------------|-----------|-------------------|-----------|---------| | Hf, | 1 | 0.0505(1) | 0.1246(3) | 0 | 0.95(2) | | Hf_2 | 1 | 0.0421(1) | 0.6269(3) | 0 | 0.88(2) | | Cr_{1} | 1 | 0.3716(5) | 0.1608(6) | 0 | 1.1(1)' | | $\operatorname{Cr}_{\mathbf{a}}^{1}$ | 1 | 0.3622(5) | 0.5910(6) | 0 | 1.1(1) | | Cr_3 | 0.14 | 0.191(3) | $0.872(\hat{5})'$ | 0 | 1.2(6) | | O_1 | 1 | 0.068(1) | 0.134(2) | 0.304(2) | 1.3(3) | | O_2 | 1 | 0.049(1) | 0.628(3) | 0.303(3) | 1.7(3) | | O_3 | 1 | 0.243(2) | 0.110(2) | 0`´ | 0.6(3) | | O_4 | 1 | 0.227(2) | 0.637(3) | 0 | 1.5(4) | | O_{5} | 1 | 0.354(3) | 0.276(3) | 0 | 2.8(7) | | O_6 | 1 | 0.351(4) | 0.476(4) | 0 | 4.4(11) | | O, | 1 | 0.107(2) | 0.271(2) | 0 | 1.6(4) | | O_8 | 1 | 0.089(2) | 0.775(2) | 0 | 1.7(5) | | O. | 1 | 0.092(3) | 0.963(2) | 0 | 1.9(5) | | O ₁₀ | 1 | 0.093(3) | 0.467(2) | 0 | 1.9(5) | | O_{11} | 0.14 | 0.282(12) | 0.868(16) | 0.184(22) | 2.2(23) | | O ₁₂ | 0.86 | -0.305(5) | 0.122(5) | 0 ′ | 5.6(13) | Table 4. Distances (Å) and angles (°) in $\sim \rm{Hf_4(OH)_8(CrO_4)_4.H_2O}$. Standard deviations are given within parentheses. | | pentagonal bipyramid | ls: | | | |--------------------------------------|---|--|---|---| | axial oxygen
atoms:
equatorial | $\rm Hf_1 - 2O_1$ | 2.10(2) | $\mathrm{Hf_2}\!-\!2\mathrm{O_2}$ | 2.08(2) | | oxygen atoms: | $\begin{array}{l} Hf_1 - O_3 \\ Hf_1 - O_7 \\ Hf_1 - O_8 \\ Hf_1 - O_9 \\ Hf_1 - O_{9'} \end{array}$ | 2.24(2)
2.09(3)
2.12(3)
2.25(3)
2.03(3) | $\begin{array}{l} Hf_2 - O_4 \\ Hf_2 - O_7 \\ Hf_2 - O_8 \\ Hf_2 - O_{10} \\ Hf_2 - O_{10} \end{array}$ | 2.13(3)
2.21(3)
2.08(3)
2.25(3)
2.01(3) | | | $\begin{array}{c} O_{1}-Hf_{1}-O_{1} \\ O_{3}-Hf_{1}-O_{7} \\ O_{7}-Hf_{1}-O_{8} \\ O_{8}-Hf_{1}-O_{9}' \\ O_{9}'-Hf_{1}-O_{9} \\ O_{9}-Hf_{1}-O_{3} \end{array}$ | 167(1)
77(1)
68(1)
76(1)
66(1)
73(1) | $\begin{array}{l} O_2 - Hf_2 - O_2 \\ O_4 - Hf_2 - O_8 \\ O_8 - Hf_2 - O_7 \\ O_7 - Hf_2 - O_{10} \\ O_{10} - Hf_2 - O_{10} \\ O_{10} ' - Hf_2 - O_4 \end{array}$ | 176(1)
71(1)
66(1)
78(1)
66(1)
78(1) | | ax. – eq.: | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | 2.92(2)
2.82(3)
3.03(3)
3.13(4) | $O_2 - O_4$ $O_2 - O_7$ $O_2 - O_8$ $O_2 - O_{10}$ | 2.92(3)
3.07(3)
2.92(4)
3.06(4)
2.94(3) | | eq. – eq.: | $O_1 - O_9$
$O_3 - O_7$
$O_7 - O_8$
$O_8 - O_9'$
$O_9' - O_9$
$O_9 - O_3$ | 3.08(3)
2.70(4)
2.34(4)
2.56(5)
2.34(6)
2.65(4) | $\begin{array}{c} O_2 - O_{10}' \\ O_4 - O_8 \\ O_8 - O_7 \\ O_7 - O_{10}' \\ O_{10}' - O_{10} \\ O_{10} - O_4 \end{array}$ | 2.46(5)
2.34(4)
2.67(5)
2.33(6)
2.78(5) | | Within the CrO ₄ | tetrahedra sharing ver | tices with HfO ₇ : | | | | | $ \begin{array}{l} \text{Cr}_1 - 2\text{O}_2 \\ \text{Cr}_1 - \text{O}_3 \\ \text{Cr}_1 - \text{O}_5 \end{array} $ | 1.69(2)
1.63(2)
1.57(4) | $ \begin{array}{l} \text{Cr}_2 - 2\text{O}_1 \\ \text{Cr}_2 - \text{O}_4 \\ \text{Cr}_2 - \text{O}_6 \end{array} $ | 1.67(2)
1.68(3)
1.56(5) | | | $ O_2 - Cr_1 - O_2 $ $ O_2 - Cr_1 - O_3 $ $ O_3 - Cr_1 - O_5 $ $ O_5 - Cr_1 - O_2 $ | 106(1)
112(1)
108(2)
109(1) | $\begin{array}{c} O_1 - Cr_2 - O_1 \\ O_1 - Cr_2 - O_4 \\ O_4 - Cr_2 - O_6 \\ O_6 - Cr_2 - O_1 \end{array}$ | 107(1)
108(1)
107(2)
113(1) | | Within the CrO ₄ | tetrahedra sharing an | edge with HfO | : | | | | $\begin{array}{l} {\rm Cr_3 - O_8} \\ {\rm Cr_3 - O_9} \\ {\rm Cr_3 - 2O_{11}} \end{array}$ | 1.78(6)
1.69(6)
1.64(15) | $egin{array}{l} { m O_8 - Cr_3 - O_9} \\ { m O_9 - Cr_3 - O_{11}} \\ { m O_{11} - Cr_3 - O_8} \\ { m O_{11} - Cr_3 - O_{11}} \\ \end{array}$ | 95(2)
118(7)
113(7)
101(10) | | Other distances: | ${ m O}_{12}({ m H}_2{ m O}) - { m O}_8 \ { m O}_{12}({ m H}_2{ m O}) - { m O}_9{}'$ | 2.86(7)
2.71(7) | $ Hf_1 - Hf_1 Hf_1 - Hf_2 Hf_2 - Hf_2 $ | 3.581(9)
3.542(6)
3.583(9) | The observed and calculated structure factors together with those corresponding to the unobserved k=2n+1 reflexions are listed in Table 2. The atomic positions and their standard deviations are given in Table 3. ## DESCRIPTION OF THE STRUCTURE 4HfO₂.4.3CrO₃.5.4H₂O is isomorphous with 4ZrO₂.4.9CrO₃.3.7H₂O apart from the different Cr₃ chromate and water contents. The most important distances and angles are given in Table 4. To facilitate a comparison between the structures of the zirconium and hafnium chromates the labelling of the atoms and the lay-out of the table are the same as for 4ZrO₂.4.9CrO₃.3.7H₂O. The hafnium atoms are joined by double hydroxide bridges involving the oxygen atoms $O_7 - O_{10}$. Planar infinite chains of composition $[Hf(OH)_2]_n^{2n+}$, running parallel to the y axis, are thus formed. In addition, there are three oxygen atoms from three different chromate groups coordinated to each hafnium atom. All the hafnium atoms are thus seven coordinated the oxygen atoms being situated at the vertices of distorted pentagonal bipyramids. The chromate groups Cr₁ and Cr₂ each share three vertices with three HfO₇ polyhedra belonging to different chains. The chains are thus connected in the x and z directions to form a three-dimensional network. The structure described has the composition 4HfO₂.4CrO₃.6H₂O if the two water molecules of crystallization are taken into account. The additional chromate groups, corresponding to the Cr₃ atoms, are situated in the same holes in the structure as the water molecules, though not simultaneously. Each CrO₄²⁻ entering such a hole expels $2OH^-$ in the $[Hf(OH)_2]_n^{2n+}$ chain and thus shares one tetrahedron edge with a pentagonal bipyramid. The occupation number of O_{12} , as deduced from the Fourier synthesis, is very nearly 1 and the compound can therefore be formulated as $4 \text{HfO}_2 \cdot (4+x) \text{CrO}_3 \cdot (6-2x) \text{H}_2 \text{O}$. The x value may vary between 0 and 2 without changing the structure, since Z=2. For this crystal x was found to be 0.28. In Fig. 1, approximately one formula unit of the structure is depicted in perspective with distances given in Å. The Hf-Hf distances are on an average 3.56_2 Å and are significantly shorter than the average Zr-Zr distance Fig. 1. One approximate formula unit of 4HfO₂.4.3CrO₃.5.4H₂O shown in perspective. The thermal motions are outlined as spheres and the distances are given in Å. Acta Chem. Scand. 27 (1973) No. 9 (3.597 Å) in zirconium chromate. Assuming that the O-Me-O angles in the $Me-(OH)_2$ bridges are not altered, the short Hf-Hf distance results in a displacement of the bridging oxygen atoms in opposite directions in order to avoid too close an oxygen-oxygen contact. The Hf-O distances are hence alternately short and long, as can be seen from Table 4 and Fig. 1. Since the structure is held together by chromate groups, there may be structural constraints on the chains due, for example, to the close contact (2.73 Å) between the chromate oxygen atoms O_5 and O_6 . However, due to experimental difficulties, the results obtained do not permit a more detailed comparison between this hafnium chromate and the structures of other similar zirconium and hafnium compounds. Acknowledgements. The authors thank Professor Georg Lundgren for his interest in this work. Thanks are also due to Dr. Susan Jagner for revising the English text. The work has been supported financially by the Swedish Natural Science Research Council (NFR, Contract No. 2318). #### REFERENCES - 1. McWhan, D. B. and Lundgren, G. Inorg. Chem. 5 (1966) 284. - 2. Hansson, M. Acta Chem. Scand. To be published. - 3. Mark, W. Acta Chem. Scand. 27 (1973) 177. - 4. Lindqvist, O. and Wengelin, F. Arkiv Kemi 28 (1967) 179. - International Tables for X-Ray Crystallography, Kynoch Press, Birmingham 1962, Vol. III, p. 122. - 6. The program library of the Dept. of Inorg. Chem. Göteborg. DATAP1 and BLOCK have been written locally by O. Lindgren, DATAP2 was originally written by Coppens, Leiserowitz and Rabinowich (1965), DRF by A. Zalkin, Berkeley, California, and LALS by P. Gantzel, R. Sparks and K. Trueblood. Received June 19, 1973.